Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruilin Bai, Yu Yao, Qiaosong Lin, Lize Wu, Zhen Li, Huijuan Wang, Mingze Ma, Di Mu, Lingxiang Hu, Hai Yang, Weihan Li, Shaolong Zhu, Xiaojun Wu, Xianhong Rui, Yan Yu
{"title":"Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries.","authors":"Ruilin Bai, Yu Yao, Qiaosong Lin, Lize Wu, Zhen Li, Huijuan Wang, Mingze Ma, Di Mu, Lingxiang Hu, Hai Yang, Weihan Li, Shaolong Zhu, Xiaojun Wu, Xianhong Rui, Yan Yu","doi":"10.1038/s41467-025-60931-x","DOIUrl":null,"url":null,"abstract":"<p><p>Employing appropriate single-atom (SA) catalysts in room-temperature sodium-sulfur (Na-S) batteries is propitious to promote the performance, whereas a universal designing strategy for the highly-efficient single-atom catalysts is absent. In this work, we adopt natural language processing techniques to screen the potential single-atom catalysts, then a binary descriptor is constructed to optimize the catalyst candidates. Atomically dispersed cobalt anchored to both nitrogen and sulfur atoms (SA Co-N/S) is selected as an ideal catalyst to significantly facilitate sulfur reduction reaction. The sulfur cathode catalyzed with SA Co-N/S almost realizes complete transformation, and the corresponding pouch cell exhibits satisfactory performance with high mass loading. In-situ X-ray absorption spectroscopy reveals the dynamical interactions between SA Co-N/S and sulfur species in the sulfur reduction reaction. Our work provides a method to select the preferable SA catalyst and to understand the interfacial catalysis dynamics in the sustainable Na-S systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5827"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60931-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Employing appropriate single-atom (SA) catalysts in room-temperature sodium-sulfur (Na-S) batteries is propitious to promote the performance, whereas a universal designing strategy for the highly-efficient single-atom catalysts is absent. In this work, we adopt natural language processing techniques to screen the potential single-atom catalysts, then a binary descriptor is constructed to optimize the catalyst candidates. Atomically dispersed cobalt anchored to both nitrogen and sulfur atoms (SA Co-N/S) is selected as an ideal catalyst to significantly facilitate sulfur reduction reaction. The sulfur cathode catalyzed with SA Co-N/S almost realizes complete transformation, and the corresponding pouch cell exhibits satisfactory performance with high mass loading. In-situ X-ray absorption spectroscopy reveals the dynamical interactions between SA Co-N/S and sulfur species in the sulfur reduction reaction. Our work provides a method to select the preferable SA catalyst and to understand the interfacial catalysis dynamics in the sustainable Na-S systems.

通过自然语言处理实现高能量密度Na-S电池的优选单原子催化剂。
在室温钠硫电池中采用合适的单原子(SA)催化剂有利于提高电池性能,但目前还没有一种通用的高效单原子催化剂设计策略。本文采用自然语言处理技术对潜在的单原子催化剂进行筛选,并构建二元描述符对候选催化剂进行优化。原子分散的钴锚定在氮和硫原子上(SA Co-N/S)是一种理想的催化剂,可以显著促进硫还原反应。用SA Co-N/S催化的硫阴极几乎实现了完全转化,相应的袋状电池具有令人满意的高质量负载性能。原位x射线吸收光谱揭示了硫还原反应中SA Co-N/S与硫种之间的动力学相互作用。我们的工作为选择合适的SA催化剂和了解可持续Na-S体系的界面催化动力学提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信