Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Saeed Yari, Albin Conde Reis, Quanquan Pang, Mohammadhosein Safari
{"title":"Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design.","authors":"Saeed Yari, Albin Conde Reis, Quanquan Pang, Mohammadhosein Safari","doi":"10.1038/s41467-025-60528-4","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-sulfur batteries are emerging as strong contenders in energy storage; however, a cohesive design framework, systematic performance analysis and benchmarks remain absent. This study bridges this gap by examining recent advancements, with a focus on functional sulfur host materials, using a data-driven approach. Through a meticulous literature review, we digitize 866 galvanostatic cycling and rate capability plots, along with the collection of key host material properties-such as specific surface area and polysulfide binding/adsorption energy-as well as essential cell design parameters including sulfur loading, electrode formulation, and electrolyte-to-sulfur ratios, to standardize performance using specific energy and power metrics. This approach enables us mapping field advancements and identify impactful research contributions. Additionally, irrespective of materials chemistry, a comprehensive analysis of this database helps us to disclose general patterns that apply universally across all cells, highlight the most constructive and detrimental regions of the design-parameter space, and perceive potential synergies. These insights outline key areas for optimization, guiding future development of practical lithium-sulfur battery technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5473"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60528-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-sulfur batteries are emerging as strong contenders in energy storage; however, a cohesive design framework, systematic performance analysis and benchmarks remain absent. This study bridges this gap by examining recent advancements, with a focus on functional sulfur host materials, using a data-driven approach. Through a meticulous literature review, we digitize 866 galvanostatic cycling and rate capability plots, along with the collection of key host material properties-such as specific surface area and polysulfide binding/adsorption energy-as well as essential cell design parameters including sulfur loading, electrode formulation, and electrolyte-to-sulfur ratios, to standardize performance using specific energy and power metrics. This approach enables us mapping field advancements and identify impactful research contributions. Additionally, irrespective of materials chemistry, a comprehensive analysis of this database helps us to disclose general patterns that apply universally across all cells, highlight the most constructive and detrimental regions of the design-parameter space, and perceive potential synergies. These insights outline key areas for optimization, guiding future development of practical lithium-sulfur battery technology.

面向下一代电池设计的锂硫电池性能基准测试与分析。
锂硫电池正在成为能源存储领域的有力竞争者;然而,一个有凝聚力的设计框架,系统的性能分析和基准仍然缺失。本研究采用数据驱动的方法,通过研究最近的进展,重点研究功能性硫宿主材料,弥补了这一差距。通过细致的文献回顾,我们将866个恒流循环和速率能力图数字化,同时收集了关键的主体材料特性,如比表面积和多硫结合/吸附能,以及基本的电池设计参数,包括硫负荷、电极配方和电解质与硫比,以使用比能量和功率指标标准化性能。这种方法使我们能够绘制领域的进展,并确定有影响力的研究贡献。此外,不考虑材料化学,对该数据库的全面分析有助于我们揭示普遍适用于所有细胞的一般模式,突出设计参数空间中最具建设性和最有害的区域,并感知潜在的协同作用。这些见解概述了优化的关键领域,指导了实用锂硫电池技术的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信