Paschen-Back effect modulation of SO42- hydration in magnetized electrolyte toward dendrite-free Zn-ion batteries.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiayan Yao, Zhi Wang, Jianwei Guo, Guoyu Qian, Hongchen Wang, Xuzhong Gong, Dong Wang
{"title":"Paschen-Back effect modulation of SO<sub>4</sub><sup>2-</sup> hydration in magnetized electrolyte toward dendrite-free Zn-ion batteries.","authors":"Xiayan Yao, Zhi Wang, Jianwei Guo, Guoyu Qian, Hongchen Wang, Xuzhong Gong, Dong Wang","doi":"10.1038/s41467-025-61310-2","DOIUrl":null,"url":null,"abstract":"<p><p>Tuning anionic solvation structures and dynamic processes at solid-liquid interfaces is critical yet challenging for stabilizing Zn metal negative electrodes in Zn-ion batteries, particularly due to the issue of dendrite formation and hydrogen evolution reaction. Here, we show that highly hydrated SO<sub>4</sub><sup>2-</sup> can be effectively modulated under a strong magnetic field via the Paschen-Back effect on O-H vibrations, which reorients individual water molecules to manipulate Zn<sup>2+</sup> solvation and protonated water clusters (H<sub>3</sub>O<sup>+</sup>). Molecular dynamics simulations and in situ Raman spectroscopy reveal that the hydrated SO<sub>4</sub><sup>2-</sup>-H<sub>2</sub>O complexes promote Zn<sup>2+</sup> nucleation and deposition on the (002) plane, with preferential oxygen adsorption inhibiting two-dimensional Zn<sup>2+</sup> diffusion. Moreover, magnetizing the electrolyte disrupts the Grotthuss proton-transfer pathway, suppressing H<sub>2</sub> evolution and further reducing dendrite formation. By employing inexpensive permanent magnets without external power, this magnetization strategy offers a practical, energy-efficient route to enhance both the stability and performance of zinc-based rechargeable batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5740"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61310-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning anionic solvation structures and dynamic processes at solid-liquid interfaces is critical yet challenging for stabilizing Zn metal negative electrodes in Zn-ion batteries, particularly due to the issue of dendrite formation and hydrogen evolution reaction. Here, we show that highly hydrated SO42- can be effectively modulated under a strong magnetic field via the Paschen-Back effect on O-H vibrations, which reorients individual water molecules to manipulate Zn2+ solvation and protonated water clusters (H3O+). Molecular dynamics simulations and in situ Raman spectroscopy reveal that the hydrated SO42--H2O complexes promote Zn2+ nucleation and deposition on the (002) plane, with preferential oxygen adsorption inhibiting two-dimensional Zn2+ diffusion. Moreover, magnetizing the electrolyte disrupts the Grotthuss proton-transfer pathway, suppressing H2 evolution and further reducing dendrite formation. By employing inexpensive permanent magnets without external power, this magnetization strategy offers a practical, energy-efficient route to enhance both the stability and performance of zinc-based rechargeable batteries.

磁化电解质中SO42水化对无枝晶锌离子电池的Paschen-Back效应调节。
调整阴离子溶剂化结构和固液界面的动态过程对于稳定锌离子电池中的锌金属负极至关重要,但也具有挑战性,特别是由于枝晶形成和析氢反应的问题。在这里,我们发现高度水合的SO42-可以在强磁场下通过对O-H振动的Paschen-Back效应有效地调制,该效应使单个水分子重新定向,以操纵Zn2+溶剂化和质子化水团簇(h30 +)。分子动力学模拟和原位拉曼光谱显示,水合SO42—H2O配合物促进了Zn2+在(002)平面上的成核和沉积,优先的氧吸附抑制了Zn2+的二维扩散。此外,磁化电解质会破坏Grotthuss质子转移途径,抑制H2的生成,进一步减少枝晶的形成。通过使用不需要外部电源的廉价永磁体,这种磁化策略为提高锌基可充电电池的稳定性和性能提供了一种实用、节能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信