Modulating transformation of DNA origami nanoarray via sequence design.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dongfang Wang, Fiona Cole, Martina Pfeiffer, Mengting Cao, Tim Schröder, Philip Tinnefeld, Yonggang Ke
{"title":"Modulating transformation of DNA origami nanoarray via sequence design.","authors":"Dongfang Wang, Fiona Cole, Martina Pfeiffer, Mengting Cao, Tim Schröder, Philip Tinnefeld, Yonggang Ke","doi":"10.1038/s41467-025-61421-w","DOIUrl":null,"url":null,"abstract":"<p><p>The four-way DNA junction is the most prevalent structural motif in DNA nanotechnology. Recently, a reconfigurable DNA nanoarray (domino array) was created with this basic motif to realize intricate, stepwise transformation by the information relay between neighboring four-way junction units. Here, we generate a DNA domino array with same sequences at every junction, and use it as a platform to study how the design of DNA bases at junctions influences the kinetics and thermodynamics of transformation of four-way junctions in reconfigurable DNA nanoarrays. By regulating the energy difference and thus the conversion between the two configurations of four-way junctions, we show the transformation of DNA nanoarray can be modulated in a designable manner. The coordinated transformation of four-way junctions in the DNA domino array enables a detailed investigation on array transformation by using Atomic Force Microscopy (AFM) imaging and single-molecule Förster resonance energy transfer (FRET) microscopy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5626"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61421-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The four-way DNA junction is the most prevalent structural motif in DNA nanotechnology. Recently, a reconfigurable DNA nanoarray (domino array) was created with this basic motif to realize intricate, stepwise transformation by the information relay between neighboring four-way junction units. Here, we generate a DNA domino array with same sequences at every junction, and use it as a platform to study how the design of DNA bases at junctions influences the kinetics and thermodynamics of transformation of four-way junctions in reconfigurable DNA nanoarrays. By regulating the energy difference and thus the conversion between the two configurations of four-way junctions, we show the transformation of DNA nanoarray can be modulated in a designable manner. The coordinated transformation of four-way junctions in the DNA domino array enables a detailed investigation on array transformation by using Atomic Force Microscopy (AFM) imaging and single-molecule Förster resonance energy transfer (FRET) microscopy.

基于序列设计的DNA折纸纳米阵列调制转化。
四向DNA连接是DNA纳米技术中最普遍的结构基序。近年来,利用这一基本基序构建了一种可重构的DNA纳米阵列(骨牌阵列),通过相邻四向结单元之间的信息中继实现复杂的逐步转换。在这里,我们生成了一个在每个结点上具有相同序列的DNA多米诺骨牌阵列,并以此为平台研究了在可重构DNA纳米阵列中,结点上DNA碱基的设计如何影响四向结点转化的动力学和热力学。通过调节能量差,从而在四向结的两种配置之间的转换,我们表明DNA纳米阵列的转换可以以可设计的方式进行调制。利用原子力显微镜(AFM)成像和单分子Förster共振能量转移显微镜(FRET)对DNA骨牌阵列中四向结的协同转化进行了详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信