Mammalian tRNA acetylation determines translation efficiency and tRNA quality control.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Na Liu, Bingxue Liu, Chun-Rui Ma, Zixin Cai, Jin-Tao Wang, Zi-Qing Chai, Nanlin Zhu, Ting Shao, Yue-Lei Chen, Yu Lin, Yirong Wang, Hong Xu, Xiao-Long Zhou
{"title":"Mammalian tRNA acetylation determines translation efficiency and tRNA quality control.","authors":"Na Liu, Bingxue Liu, Chun-Rui Ma, Zixin Cai, Jin-Tao Wang, Zi-Qing Chai, Nanlin Zhu, Ting Shao, Yue-Lei Chen, Yu Lin, Yirong Wang, Hong Xu, Xiao-Long Zhou","doi":"10.1038/s41467-025-60723-3","DOIUrl":null,"url":null,"abstract":"<p><p>Acetylation is a conserved and pivotal RNA modification. Acetylation of tRNA occurs at C12 (ac<sup>4</sup>C12) in eukaryotic tRNAs. Yeast ac<sup>4</sup>C12 prevents tRNA<sup>Ser</sup> from rapid tRNA decay (RTD) at higher temperatures. However, the biological function of ac<sup>4</sup>C12 in higher eukaryotes remains unexplored. Moreover, whether mammalian cells contain an RTD pathway is unclear. Here, we deleted Thumpd1, the indispensable factor for ac<sup>4</sup>C12 biogenesis, in NIH/3T3 cells. Loss of ac<sup>4</sup>C12 significantly reduced tRNA aminoacylation and translational efficiency physiologically, in particular, of those enriched with Ser/Leu codons with two U/A nucleotides. Remarkably, ac<sup>4</sup>C12 hypomodification selectively generated rapid tRNA<sup>Leu</sup>(CAG) turnover under heat stress. We demonstrated that tRNA<sup>Leu</sup>(CAG) was degraded by a mammalian RTD (mRTD) mechanism, consisting of Xrn1/Xrn2-mediated 5'-3' exonuclease digestion and intracellular pAp level control by Bpnt1/Bpnt2. Our results reveal both the pivotal roles of ac<sup>4</sup>C12 in translation and a mRTD pathway for tRNA quality control under heat stress in mammalian cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5496"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60723-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acetylation is a conserved and pivotal RNA modification. Acetylation of tRNA occurs at C12 (ac4C12) in eukaryotic tRNAs. Yeast ac4C12 prevents tRNASer from rapid tRNA decay (RTD) at higher temperatures. However, the biological function of ac4C12 in higher eukaryotes remains unexplored. Moreover, whether mammalian cells contain an RTD pathway is unclear. Here, we deleted Thumpd1, the indispensable factor for ac4C12 biogenesis, in NIH/3T3 cells. Loss of ac4C12 significantly reduced tRNA aminoacylation and translational efficiency physiologically, in particular, of those enriched with Ser/Leu codons with two U/A nucleotides. Remarkably, ac4C12 hypomodification selectively generated rapid tRNALeu(CAG) turnover under heat stress. We demonstrated that tRNALeu(CAG) was degraded by a mammalian RTD (mRTD) mechanism, consisting of Xrn1/Xrn2-mediated 5'-3' exonuclease digestion and intracellular pAp level control by Bpnt1/Bpnt2. Our results reveal both the pivotal roles of ac4C12 in translation and a mRTD pathway for tRNA quality control under heat stress in mammalian cells.

哺乳动物tRNA乙酰化决定翻译效率和tRNA质量控制。
乙酰化是一种保守而关键的RNA修饰。真核tRNA的乙酰化发生在C12 (ac4C12)位点。酵母ac4C12阻止tRNASer在较高温度下快速tRNA衰变(RTD)。然而,ac4C12在高等真核生物中的生物学功能尚不清楚。此外,哺乳动物细胞是否含有RTD通路尚不清楚。在这里,我们删除了NIH/3T3细胞中ac4C12生物发生不可或缺的因子Thumpd1。ac4C12的缺失在生理上显著降低了tRNA的氨基酰化和翻译效率,特别是那些含有两个U/A核苷酸的Ser/Leu密码子的基因。值得注意的是,在热胁迫下,ac4C12低改性选择性地产生了快速的tRNALeu(CAG)转换。我们证明tRNALeu(CAG)通过哺乳动物RTD (mRTD)机制被降解,该机制包括Xrn1/ xrn2介导的5‘-3’外切酶酶切和Bpnt1/Bpnt2控制细胞内pAp水平。我们的研究结果揭示了ac4C12在哺乳动物细胞热应激下翻译和tRNA质量控制的mRTD途径中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信