Xiaohan Lin, Yijie Xia, Yanheng Li, Yu-Peng Huang, Shuo Liu, Jun Zhang, Yi Qin Gao
{"title":"In-silico 3D molecular editing through physics-informed and preference-aligned generative foundation models.","authors":"Xiaohan Lin, Yijie Xia, Yanheng Li, Yu-Peng Huang, Shuo Liu, Jun Zhang, Yi Qin Gao","doi":"10.1038/s41467-025-61323-x","DOIUrl":null,"url":null,"abstract":"<p><p>Generating molecular structures towards desired properties is a critical task in computer-aided drug and material design. As special 3D entities, molecules inherit non-trivial physical complexity, and many intrinsic properties may not be learnable through pure data-driven approaches, hindering the transaction of powerful generative artificial intelligence (GenAI) to this field. To avoid existing molecular GenAI's heavy reliance on domain-specific models and priors, in this research, we derive theoretical guidelines to bridge the methodological gap between GenAI for images and molecules, allowing pre-training of foundation models for 3D molecular generation. Difficulties due to symmetry, stability and entropy, which are critical for molecules, are overcome through a simple and model-agnostic training protocol. Moreover, we apply physics-informed strategies to force MolEdit, a pre-trained multimodal molecular GenAI, to obey physics laws and align with contextual preferences, and thus suppress undesired model hallucinations. MolEdit can generate valid molecules with comprehensive symmetry, strikes a better balance between configuration stability and conformer diversity, and supports complicated 3D scaffolds which frustrate other methods. Furthermore, MolEdit is applicable for zero-shot lead optimization and linker design following contextual and geometrical specifications. Collectively, as a foundation model, MolEdit offers flexibility and developability for AI-aided editing and manipulation of molecules serving various purposes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6043"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61323-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Generating molecular structures towards desired properties is a critical task in computer-aided drug and material design. As special 3D entities, molecules inherit non-trivial physical complexity, and many intrinsic properties may not be learnable through pure data-driven approaches, hindering the transaction of powerful generative artificial intelligence (GenAI) to this field. To avoid existing molecular GenAI's heavy reliance on domain-specific models and priors, in this research, we derive theoretical guidelines to bridge the methodological gap between GenAI for images and molecules, allowing pre-training of foundation models for 3D molecular generation. Difficulties due to symmetry, stability and entropy, which are critical for molecules, are overcome through a simple and model-agnostic training protocol. Moreover, we apply physics-informed strategies to force MolEdit, a pre-trained multimodal molecular GenAI, to obey physics laws and align with contextual preferences, and thus suppress undesired model hallucinations. MolEdit can generate valid molecules with comprehensive symmetry, strikes a better balance between configuration stability and conformer diversity, and supports complicated 3D scaffolds which frustrate other methods. Furthermore, MolEdit is applicable for zero-shot lead optimization and linker design following contextual and geometrical specifications. Collectively, as a foundation model, MolEdit offers flexibility and developability for AI-aided editing and manipulation of molecules serving various purposes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.