Inorganic-bacterial biohybrids for efficient solar-driven nitrogen fixation.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xue Zhou, Dan Wu, Yingjie Zhang, Tianhang Feng, Wenming Zhang, Zhonghai Zhang
{"title":"Inorganic-bacterial biohybrids for efficient solar-driven nitrogen fixation.","authors":"Xue Zhou, Dan Wu, Yingjie Zhang, Tianhang Feng, Wenming Zhang, Zhonghai Zhang","doi":"10.1038/s41467-025-60937-5","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of microbial nitrogen (N<sub>2</sub>) fixation with photochemical processes using inorganic light-absorbing nanomaterials is a burgeoning field in sustainable energy production. Here, we explore the synergistic combination of inorganic semiconductor nanowires (NWs) with whole-cell microorganisms to create an inorganic-bacterial biohybrid system. Specifically, we employ Cu<sub>2</sub>O@TiO<sub>2</sub> NWs with a core/shell structure to harness sunlight and generate photoexcited electrons. Azotobacter vinelandii, serving as a biocatalyst, adsorbs onto these NWs and facilitates the reception of photoexcited electrons, thereby enhancing the efficiency of the photoelectrochemical N<sub>2</sub> fixation reaction (PEC-NRR). The biohybrid system achieves an impressive ammonia (NH<sub>3</sub>) yield of (1.49 ± 0.05) × 10<sup>-9 </sup> mol s<sup>-1</sup> cm<sup>-2</sup> (5.36 ± 0.18 μmol h<sup>-1</sup> cm<sup>-2</sup>). The enhancement in NH<sub>3</sub> synthesis within the Cu<sub>2</sub>O@TiO<sub>2</sub> NWs/A. vinelandii biohybrid is attributed to the increased concentrations of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5'-triphosphate (ATP), as well as the overexpression of N<sub>2</sub>-fixing genes like nifH and nifD within the nitrogenase enzyme complex. This study underscores the potential of inorganic-bacterial biohybrid systems in solar-chemical conversion, paving the way for more diverse and functional approaches to harnessing solar energy for sustainable chemical production.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5690"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60937-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of microbial nitrogen (N2) fixation with photochemical processes using inorganic light-absorbing nanomaterials is a burgeoning field in sustainable energy production. Here, we explore the synergistic combination of inorganic semiconductor nanowires (NWs) with whole-cell microorganisms to create an inorganic-bacterial biohybrid system. Specifically, we employ Cu2O@TiO2 NWs with a core/shell structure to harness sunlight and generate photoexcited electrons. Azotobacter vinelandii, serving as a biocatalyst, adsorbs onto these NWs and facilitates the reception of photoexcited electrons, thereby enhancing the efficiency of the photoelectrochemical N2 fixation reaction (PEC-NRR). The biohybrid system achieves an impressive ammonia (NH3) yield of (1.49 ± 0.05) × 10-9  mol s-1 cm-2 (5.36 ± 0.18 μmol h-1 cm-2). The enhancement in NH3 synthesis within the Cu2O@TiO2 NWs/A. vinelandii biohybrid is attributed to the increased concentrations of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5'-triphosphate (ATP), as well as the overexpression of N2-fixing genes like nifH and nifD within the nitrogenase enzyme complex. This study underscores the potential of inorganic-bacterial biohybrid systems in solar-chemical conversion, paving the way for more diverse and functional approaches to harnessing solar energy for sustainable chemical production.

利用太阳能驱动的高效固氮的无机-细菌生物杂交种。
利用无机吸光纳米材料将微生物固氮(N2)与光化学过程相结合是可持续能源生产的一个新兴领域。在这里,我们探索无机半导体纳米线(NWs)与全细胞微生物的协同组合,以创建无机-细菌生物杂交系统。具体地说,我们使用了具有核/壳结构的Cu2O@TiO2 NWs来利用阳光并产生光激发电子。固氮杆菌作为一种生物催化剂,吸附在这些NWs上,促进光激发电子的接收,从而提高了光电化学N2固定反应(PEC-NRR)的效率。该体系的氨(NH3)产率为(1.49±0.05)× 10-9 mol s-1 cm-2(5.36±0.18 μmol h-1 cm-2)。Cu2O@TiO2 NWs/A内NH3合成的增强。vinelandii生物杂交归因于烟酰胺腺嘌呤二核苷酸-氢(NADH)和腺苷5'-三磷酸(ATP)浓度的增加,以及氮酶复合物内nifH和nifD等n2固定基因的过度表达。这项研究强调了无机-细菌生物混合系统在太阳能-化学转化中的潜力,为利用太阳能进行可持续化学生产的更多样化和更有效的方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信