Paul-Adrian Bulzu, Helena Henriques Vieira, Rohit Ghai
{"title":"Lineage-specific expansions of polinton-like viruses in photosynthetic cryptophytes.","authors":"Paul-Adrian Bulzu, Helena Henriques Vieira, Rohit Ghai","doi":"10.1186/s40168-025-02148-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polinton-like viruses (PLVs) are diverse eukaryotic DNA viral elements (14-40 kb) that often undergo significant expansion within protist genomes through repeated insertion events. Emerging evidence indicates they function as antiviral defense systems in protists, reducing the progeny yield of their infecting giant viruses (phylum Nucleocytoviricota) and influencing the population dynamics and evolution of both viruses and their hosts. While many PLVs have been identified within the genomes of sequenced protists, most were recovered from metagenomic data. Even with the large number of PLVs identified from metagenomic data, their host-virus linkages remain unknown owing to the scarcity of ecologically relevant protist genomes. Additionally, the extent of PLV diversification within abundant freshwater taxa remains undetermined. In order to tackle these questions, high-quality genomes of abundant and representative taxa that bridge genomic and metagenomic PLVs are necessary. In this regard, cryptophytes, which are among the most widely distributed, abundant organisms in freshwaters and have remained largely out of bounds of genomic and metagenomic approaches, are ideal candidates for investigating the diversification of such viral elements both in cellular and environmental context.</p><p><strong>Results: </strong>We leveraged long-read sequencing to recover large (200-600 Mb), high-quality, and highly repetitive (> 60%) genomes of representative freshwater and marine photosynthetic cryptophytes. We uncovered over a thousand complete PLVs within these genomes, revealing vast lineage-specific expansions, particularly in the common freshwater cryptophyte Rhodomonas lacustris. By combining deep sequence homology annotation with biological network analyses, we discern well-defined PLV groups defined by characteristic gene-sharing patterns and the use of distinct strategies for replication and integration within host genomes. Finally, the PLVs recovered from these cryptophyte genomes also allow us to assign host-virus linkages in environmental sequencing data.</p><p><strong>Conclusions: </strong>Our findings provide a primer for understanding the evolutionary history, gene content, modes of replication and infection strategies of cryptophyte PLVs, with special emphasis on their expansion as endogenous viral elements (EVEs) in freshwater bloom-forming R. lacustris. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"154"},"PeriodicalIF":13.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02148-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Polinton-like viruses (PLVs) are diverse eukaryotic DNA viral elements (14-40 kb) that often undergo significant expansion within protist genomes through repeated insertion events. Emerging evidence indicates they function as antiviral defense systems in protists, reducing the progeny yield of their infecting giant viruses (phylum Nucleocytoviricota) and influencing the population dynamics and evolution of both viruses and their hosts. While many PLVs have been identified within the genomes of sequenced protists, most were recovered from metagenomic data. Even with the large number of PLVs identified from metagenomic data, their host-virus linkages remain unknown owing to the scarcity of ecologically relevant protist genomes. Additionally, the extent of PLV diversification within abundant freshwater taxa remains undetermined. In order to tackle these questions, high-quality genomes of abundant and representative taxa that bridge genomic and metagenomic PLVs are necessary. In this regard, cryptophytes, which are among the most widely distributed, abundant organisms in freshwaters and have remained largely out of bounds of genomic and metagenomic approaches, are ideal candidates for investigating the diversification of such viral elements both in cellular and environmental context.
Results: We leveraged long-read sequencing to recover large (200-600 Mb), high-quality, and highly repetitive (> 60%) genomes of representative freshwater and marine photosynthetic cryptophytes. We uncovered over a thousand complete PLVs within these genomes, revealing vast lineage-specific expansions, particularly in the common freshwater cryptophyte Rhodomonas lacustris. By combining deep sequence homology annotation with biological network analyses, we discern well-defined PLV groups defined by characteristic gene-sharing patterns and the use of distinct strategies for replication and integration within host genomes. Finally, the PLVs recovered from these cryptophyte genomes also allow us to assign host-virus linkages in environmental sequencing data.
Conclusions: Our findings provide a primer for understanding the evolutionary history, gene content, modes of replication and infection strategies of cryptophyte PLVs, with special emphasis on their expansion as endogenous viral elements (EVEs) in freshwater bloom-forming R. lacustris. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.