The photosensitizer DH-I-180-3 regulates intracellular bacterial growth by increasing the secretion of proinflammatory cytokines via the NF-κB- and MAPK-mediated signaling pathways and promoting phagosome maturation in Salmonella-infected mouse macrophages.
Hyo-Jung Kim, Eui-Kwon Jeong, Hyo-Ji Lee, Yu-Jin Jung
{"title":"The photosensitizer DH-I-180-3 regulates intracellular bacterial growth by increasing the secretion of proinflammatory cytokines via the NF-κB- and MAPK-mediated signaling pathways and promoting phagosome maturation in Salmonella-infected mouse macrophages.","authors":"Hyo-Jung Kim, Eui-Kwon Jeong, Hyo-Ji Lee, Yu-Jin Jung","doi":"10.71150/jm.2502003","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a known strategy for treating cancer; in PDT, photosensitizers are activated by light stimulation and then induce reactive oxygen species (ROS) production to damage cancer tissues. Recently evidence has shown that PDT can also be used as a novel treatment strategy to control pathogenic bacteria. In previous studies, the photosensitizer DH-I-180-3 was reported to effectively regulate multidrug-resistant Mycobacterium tuberculosis growth. Here, we confirmed the effects of DH-I-180-3 on the antibacterial activity and inflammatory response of macrophages to Salmonella. Photoactivated DH-I-180-3 regulated intracellular bacterial growth in Salmonella-infected macrophages. Moreover, DH-I-180-3 increased intracellular ROS levels in Salmonella-infected macrophages. The phosphorylation of the intracellular signaling proteins IκBα and JNK1/2 was increased in DH-I-180-3-treated Salmonella-infected macrophages. Additionally, we observed that DH-I-180-3 significantly increased the mRNA expression and protein secretion of the proinflammatory cytokine TNF-α and promoted phagosome maturation by upregulating EEA1, LAMP1, and Cathepsin D in Salmonella-infected macrophages. Overall, these results demonstrate that photoactivated DH-I-180-3 enhances the bactericidal response to intracellular bacterial infection by promoting inflammatory signaling pathways and phagosome maturation. Therefore, DH-I-180-3 has the potential to be developed into PDT for treating bacterial-infection.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 6","pages":"e2502003"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2502003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) is a known strategy for treating cancer; in PDT, photosensitizers are activated by light stimulation and then induce reactive oxygen species (ROS) production to damage cancer tissues. Recently evidence has shown that PDT can also be used as a novel treatment strategy to control pathogenic bacteria. In previous studies, the photosensitizer DH-I-180-3 was reported to effectively regulate multidrug-resistant Mycobacterium tuberculosis growth. Here, we confirmed the effects of DH-I-180-3 on the antibacterial activity and inflammatory response of macrophages to Salmonella. Photoactivated DH-I-180-3 regulated intracellular bacterial growth in Salmonella-infected macrophages. Moreover, DH-I-180-3 increased intracellular ROS levels in Salmonella-infected macrophages. The phosphorylation of the intracellular signaling proteins IκBα and JNK1/2 was increased in DH-I-180-3-treated Salmonella-infected macrophages. Additionally, we observed that DH-I-180-3 significantly increased the mRNA expression and protein secretion of the proinflammatory cytokine TNF-α and promoted phagosome maturation by upregulating EEA1, LAMP1, and Cathepsin D in Salmonella-infected macrophages. Overall, these results demonstrate that photoactivated DH-I-180-3 enhances the bactericidal response to intracellular bacterial infection by promoting inflammatory signaling pathways and phagosome maturation. Therefore, DH-I-180-3 has the potential to be developed into PDT for treating bacterial-infection.
期刊介绍:
Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.