Advanced wound healing with Stimuli-Responsive nanozymes: mechanisms, design and applications.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoyang Liu, Huihui Zhang, Lianglong Chen, Zesen Zheng, Wenwen Li, Chaoyang Huang, Hai Zhou, Yanqi Chen, Ziwei Jiang, Jiaqi Liang, Qiuyi Yu, Lei Yang
{"title":"Advanced wound healing with Stimuli-Responsive nanozymes: mechanisms, design and applications.","authors":"Xiaoyang Liu, Huihui Zhang, Lianglong Chen, Zesen Zheng, Wenwen Li, Chaoyang Huang, Hai Zhou, Yanqi Chen, Ziwei Jiang, Jiaqi Liang, Qiuyi Yu, Lei Yang","doi":"10.1186/s12951-025-03558-w","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing outcomes critically depend on precise regulation of oxidative and antimicrobial microenvironments. Traditional dressings have limited wound responsiveness, insufficient infection control, and limited treatment accuracy. In contrast, nanozymes, featuring enzyme-mimetic activities, tunable catalysis, and engineered sizes that balance catalytic site accessibility with tissue penetration, offer spatiotemporal control of reactive oxygen species (ROS) and pathogen elimination. This review systematically examines recent advances in stimuli-responsive nanozymes for wound management, focusing on their catalytic mechanisms and therapeutic specificity. These intelligent systems dynamically adapt catalytic behaviors (e.g., ROS scavenging, bacterial lysis) to physical stimuli (temperature, light, ultrasound) and physiological signals (pH, redox imbalance, ATP levels, microbial metabolites), leveraging size-dependent targeting mechanisms to ensure localized therapeutic effects while minimizing off-target damage. Current evidence demonstrates their multifunctional capacity to synergistically accelerate infection clearance, inflammation resolution, and angiogenesis. Future development should prioritize biosafety validation alongside size-effect standardization, stimulus specificity, and scalable manufacturing to advance personalized nanomedicine for refractory wounds.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"479"},"PeriodicalIF":10.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03558-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing outcomes critically depend on precise regulation of oxidative and antimicrobial microenvironments. Traditional dressings have limited wound responsiveness, insufficient infection control, and limited treatment accuracy. In contrast, nanozymes, featuring enzyme-mimetic activities, tunable catalysis, and engineered sizes that balance catalytic site accessibility with tissue penetration, offer spatiotemporal control of reactive oxygen species (ROS) and pathogen elimination. This review systematically examines recent advances in stimuli-responsive nanozymes for wound management, focusing on their catalytic mechanisms and therapeutic specificity. These intelligent systems dynamically adapt catalytic behaviors (e.g., ROS scavenging, bacterial lysis) to physical stimuli (temperature, light, ultrasound) and physiological signals (pH, redox imbalance, ATP levels, microbial metabolites), leveraging size-dependent targeting mechanisms to ensure localized therapeutic effects while minimizing off-target damage. Current evidence demonstrates their multifunctional capacity to synergistically accelerate infection clearance, inflammation resolution, and angiogenesis. Future development should prioritize biosafety validation alongside size-effect standardization, stimulus specificity, and scalable manufacturing to advance personalized nanomedicine for refractory wounds.

先进的伤口愈合与刺激反应纳米酶:机制,设计和应用。
伤口愈合结果严重依赖于氧化和抗菌微环境的精确调节。传统敷料的伤口反应性有限,感染控制不足,治疗准确性有限。相比之下,纳米酶具有模拟酶的活性,可调节的催化作用,以及平衡催化位点可达性和组织渗透的工程尺寸,提供了对活性氧(ROS)和病原体消除的时空控制。这篇综述系统地检查了伤口管理中刺激反应性纳米酶的最新进展,重点是它们的催化机制和治疗特异性。这些智能系统根据物理刺激(温度、光、超声)和生理信号(pH、氧化还原失衡、ATP水平、微生物代谢物)动态调整催化行为(如ROS清除、细菌裂解),利用大小依赖的靶向机制确保局部治疗效果,同时最大限度地减少脱靶损伤。目前的证据表明,它们具有协同加速感染清除、炎症消退和血管生成的多功能能力。未来的发展应优先考虑生物安全性验证以及尺寸效应标准化、刺激特异性和可扩展制造,以推进难治性伤口的个性化纳米医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信