Jason H Gill, Jonathan D Sellars, Paul G Waddell, Steven D Shnyder, Ronald Grigg, Colin W G Fishwick
{"title":"Development of novel benzamide class I selective lysine deacetylase inhibitors as potent anticancer agents.","authors":"Jason H Gill, Jonathan D Sellars, Paul G Waddell, Steven D Shnyder, Ronald Grigg, Colin W G Fishwick","doi":"10.1080/14756366.2025.2520612","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule inhibitors of lysine deacetylases (KDACs), exemplified by histone deacetylases (HDACs), exhibit significant promise as cancer therapeutics. Using a modular combinatorial chemistry approach, a novel class of KDAC inhibitors (KDACi) containing the aminophenyl-benzamide headgroup have been developed, which incorporate a vinyl group within the linker region for active site stabilisation and a trifluoromethyl moiety within the capping group to exploit enzyme surface topology. Consequently, a class I selective KDACi (<b>7</b>) with a preference towards HDAC1 over other class I KDACs was identified. This KDACi orientates differently within the KDAC active site and exhibits an improved antitumour profile relative to the benchmark class I selective KDACi Entinostat (<b>1</b>). The clinical potential of <b>7</b> is further exemplified by the inhibition of tumour growth in an <i>in vivo</i> model of ovarian cancer. These results offer significant scope for the rational development of KDACi with improved selectivity against specific KDAC and widespread therapeutic potential.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2520612"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2520612","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecule inhibitors of lysine deacetylases (KDACs), exemplified by histone deacetylases (HDACs), exhibit significant promise as cancer therapeutics. Using a modular combinatorial chemistry approach, a novel class of KDAC inhibitors (KDACi) containing the aminophenyl-benzamide headgroup have been developed, which incorporate a vinyl group within the linker region for active site stabilisation and a trifluoromethyl moiety within the capping group to exploit enzyme surface topology. Consequently, a class I selective KDACi (7) with a preference towards HDAC1 over other class I KDACs was identified. This KDACi orientates differently within the KDAC active site and exhibits an improved antitumour profile relative to the benchmark class I selective KDACi Entinostat (1). The clinical potential of 7 is further exemplified by the inhibition of tumour growth in an in vivo model of ovarian cancer. These results offer significant scope for the rational development of KDACi with improved selectivity against specific KDAC and widespread therapeutic potential.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.