Soojin Kim, Mi-Sun Choi, Hyun Jegal, Min Beom Heo, Minjeong Kwak, Hyun Kyong Shon, Seungwoo Song, Tae Geol Lee, Ji-Ho Park, Dong Woo Lee, Seokjoo Yoon, Jung-Hwa Oh
{"title":"New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model.","authors":"Soojin Kim, Mi-Sun Choi, Hyun Jegal, Min Beom Heo, Minjeong Kwak, Hyun Kyong Shon, Seungwoo Song, Tae Geol Lee, Ji-Ho Park, Dong Woo Lee, Seokjoo Yoon, Jung-Hwa Oh","doi":"10.1186/s13036-025-00532-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanomaterials offer increasing applications across diverse sectors, including food science, medicine, and electronics. Environmental risk assessment is crucial for ensuring the safety and sustainability of nanomaterials. However, high-throughput screening (HTS) of their potential toxicity remains challenging owing to their unique physicochemical properties.</p><p><strong>Results: </strong>This study introduces a novel pulmonary three-dimensional (3D) floating extracellular matrix (ECM) model utilizing a 384-pillar/well platform for HTS of nanotoxicity. Compared with conventional HTS models based on two-dimensional (2D) cells, the 3D model developed in this study successfully addressed the issues related to the aggregation and sedimentation of nanoparticles and their possible optical interference with the toxicity assays. Using 20 nm silica nanoparticles (SiNPs), we assessed cell viability and nanoparticle uptake in both serum-containing and serum-free culture media. While the 2D model showed high SiNPs toxicity regardless of the media composition, the pulmonary 3D floating ECM model demonstrated variable toxicities that depended on the SiNPs behaviors under different conditions.</p><p><strong>Conclusions: </strong>By reducing the uncertainties associated with the sedimentation and optical interference of nanomaterials, our 3D model provided a more precise analysis of cytotoxicity. This study highlights the potential of using new approach methodologies and improved HTS approaches to enhance the efficiency and accuracy of risk assessment protocols for emerging nanomaterials.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"60"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220522/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00532-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nanomaterials offer increasing applications across diverse sectors, including food science, medicine, and electronics. Environmental risk assessment is crucial for ensuring the safety and sustainability of nanomaterials. However, high-throughput screening (HTS) of their potential toxicity remains challenging owing to their unique physicochemical properties.
Results: This study introduces a novel pulmonary three-dimensional (3D) floating extracellular matrix (ECM) model utilizing a 384-pillar/well platform for HTS of nanotoxicity. Compared with conventional HTS models based on two-dimensional (2D) cells, the 3D model developed in this study successfully addressed the issues related to the aggregation and sedimentation of nanoparticles and their possible optical interference with the toxicity assays. Using 20 nm silica nanoparticles (SiNPs), we assessed cell viability and nanoparticle uptake in both serum-containing and serum-free culture media. While the 2D model showed high SiNPs toxicity regardless of the media composition, the pulmonary 3D floating ECM model demonstrated variable toxicities that depended on the SiNPs behaviors under different conditions.
Conclusions: By reducing the uncertainties associated with the sedimentation and optical interference of nanomaterials, our 3D model provided a more precise analysis of cytotoxicity. This study highlights the potential of using new approach methodologies and improved HTS approaches to enhance the efficiency and accuracy of risk assessment protocols for emerging nanomaterials.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.