Casey E Sergott, Katelynn Rodman, Nathaniel T Greene, Ben-Zheng Li, Luberson Joseph, Fabio A Machado, Genesis A Alarcon, Elizabeth A McCullagh
{"title":"Variation in head and pinna morphology of preserved Peromyscus spp. specimens and implications for auditory function.","authors":"Casey E Sergott, Katelynn Rodman, Nathaniel T Greene, Ben-Zheng Li, Luberson Joseph, Fabio A Machado, Genesis A Alarcon, Elizabeth A McCullagh","doi":"10.1111/joa.70011","DOIUrl":null,"url":null,"abstract":"<p><p>The physical characteristics of an animal's head and pinna mark the beginning of auditory communication. Auditory communication is broadly achieved by receiving sounds from the environment and plays a vital role in an animal's ability to perceive and localize sounds. Natural history museums and collections, along with their vast repositories of specimens, provide a unique resource for examining how the variability in both the size and shape of the head and pinna causes variability in the detection of acoustic signals across species. Using this approach, we measured morphological features of the head and pinna on over 1200 preserved specimens of Peromyscus boylii, P. californicus, P. gossypinus, P. leucopus, P. maniculatus, and P. truei, followed by a series of head-related transfer functions (HRTFs) on several individuals to study the relationship between morphology and available auditory information. Our morphological results show significant variation in pinna length and width, as well as in the distance between the two ears across the six species. Interaural time differences and interaural level differences were calculated and demonstrated consistent results across species, suggesting the differences in head and pinna size do not significantly modify these cues. Not only does this study contribute to existing research on external morphology and auditory function, but it also provides valuable insight into the use of preserved zoological specimens in auditory research, an area that is currently understudied.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.70011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The physical characteristics of an animal's head and pinna mark the beginning of auditory communication. Auditory communication is broadly achieved by receiving sounds from the environment and plays a vital role in an animal's ability to perceive and localize sounds. Natural history museums and collections, along with their vast repositories of specimens, provide a unique resource for examining how the variability in both the size and shape of the head and pinna causes variability in the detection of acoustic signals across species. Using this approach, we measured morphological features of the head and pinna on over 1200 preserved specimens of Peromyscus boylii, P. californicus, P. gossypinus, P. leucopus, P. maniculatus, and P. truei, followed by a series of head-related transfer functions (HRTFs) on several individuals to study the relationship between morphology and available auditory information. Our morphological results show significant variation in pinna length and width, as well as in the distance between the two ears across the six species. Interaural time differences and interaural level differences were calculated and demonstrated consistent results across species, suggesting the differences in head and pinna size do not significantly modify these cues. Not only does this study contribute to existing research on external morphology and auditory function, but it also provides valuable insight into the use of preserved zoological specimens in auditory research, an area that is currently understudied.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.