Predicting heteropolymer phase separation using two-chain contact maps.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Jessica Jin, Wesley Oliver, Michael A Webb, William M Jacobs
{"title":"Predicting heteropolymer phase separation using two-chain contact maps.","authors":"Jessica Jin, Wesley Oliver, Michael A Webb, William M Jacobs","doi":"10.1063/5.0269504","DOIUrl":null,"url":null,"abstract":"<p><p>Phase separation in polymer solutions often correlates with single-chain and two-chain properties, such as the single-chain radius of gyration, Rg, and the pairwise second virial coefficient, B22. However, recent studies have shown that these metrics can fail to distinguish phase-separating from non-phase-separating heteropolymers, including intrinsically disordered proteins (IDPs). Here, we introduce an approach to predict heteropolymer phase separation from two-chain simulations by analyzing contact maps, which capture how often specific monomers from the two chains are in physical proximity. While B22 summarizes the overall attraction between two chains, contact maps preserve spatial information about their interactions. To compare these metrics, we train phase-separation classifiers for both a minimal heteropolymer model and a chemically specific, residue-level IDP model. Remarkably, simple statistical properties of two-chain contact maps predict phase separation with high accuracy, vastly outperforming classifiers based on Rg and B22 alone. Our results thus establish a transferable and computationally efficient method to uncover key driving forces of IDP phase behavior based on their physical interactions in dilute solution.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0269504","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phase separation in polymer solutions often correlates with single-chain and two-chain properties, such as the single-chain radius of gyration, Rg, and the pairwise second virial coefficient, B22. However, recent studies have shown that these metrics can fail to distinguish phase-separating from non-phase-separating heteropolymers, including intrinsically disordered proteins (IDPs). Here, we introduce an approach to predict heteropolymer phase separation from two-chain simulations by analyzing contact maps, which capture how often specific monomers from the two chains are in physical proximity. While B22 summarizes the overall attraction between two chains, contact maps preserve spatial information about their interactions. To compare these metrics, we train phase-separation classifiers for both a minimal heteropolymer model and a chemically specific, residue-level IDP model. Remarkably, simple statistical properties of two-chain contact maps predict phase separation with high accuracy, vastly outperforming classifiers based on Rg and B22 alone. Our results thus establish a transferable and computationally efficient method to uncover key driving forces of IDP phase behavior based on their physical interactions in dilute solution.

利用双链接触图预测异质聚合物相分离。
聚合物溶液中的相分离通常与单链和双链性质有关,如单链旋转半径Rg和成对二次维里系数B22。然而,最近的研究表明,这些指标无法区分相分离和非相分离的杂聚物,包括内在无序蛋白(IDPs)。在这里,我们介绍了一种方法,通过分析接触图来预测来自两链模拟的异聚物相分离,接触图捕获了来自两链的特定单体在物理上接近的频率。虽然B22总结了两条链之间的整体吸引力,但接触图保留了它们相互作用的空间信息。为了比较这些指标,我们训练了最小异聚物模型和化学特异性残留水平IDP模型的相分离分类器。值得注意的是,两链接触图的简单统计特性预测相分离的准确性很高,远远优于单独基于Rg和B22的分类器。因此,我们的研究结果建立了一种可转移和计算效率高的方法,以揭示基于稀溶液中物理相互作用的IDP相行为的关键驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信