Ilimaquinone as a novel marine sponge-derived antibacterial agent: mechanistic insights into its antibiofilm and quorum sensing inhibitory properties targeting bacterial virulence.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Malvi Surti, Mitesh Patel, Reem Binsuwaidan, Mohd Adnan, Nawaf Alshammari, Syeda Bushra Fatima, Mandadi Narsimha Reddy
{"title":"Ilimaquinone as a novel marine sponge-derived antibacterial agent: mechanistic insights into its antibiofilm and quorum sensing inhibitory properties targeting bacterial virulence.","authors":"Malvi Surti, Mitesh Patel, Reem Binsuwaidan, Mohd Adnan, Nawaf Alshammari, Syeda Bushra Fatima, Mandadi Narsimha Reddy","doi":"10.1007/s10123-025-00689-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the antibacterial, antibiofilm, and anti-quorum-sensing (QS) properties of ilimaquinone (IQ) against Gram-positive and Gram-negative pathogens. The agar cup diffusion method revealed significant bacterial inhibition, with minimum inhibitory (MIC) and bactericidal (MBC) concentrations ranging from 6.25 to 25 μM and 12.5 to 50 μM, respectively. IQ exhibited dose-dependent biofilm inhibition, demonstrating its potential as an anti-biofilm agent. QS inhibition was assessed by pigment suppression in Chromobacterium violaceum (violacein), Serratia marcescens (prodigiosin), and Pseudomonas aeruginosa (pyocyanin, pyoverdine), reducing their production by 73.33%, 53.68%, 57.13%, and 62.42%, respectively, at sub-MIC concentrations. IQ also inhibited QS-regulated virulence factors in P. aeruginosa, including LasA protease, elastase, rhamnolipid, and extracellular polymeric substance (EPS) production, disrupting biofilm formation. Molecular docking and dynamics analysis confirmed strong binding affinities of IQ to key QS and biofilm-associated proteins (EsaI, PilY1, LasA, PilT, LasR, RhlR, LasI, PqsR, CviR, and CviR'), highlighting its mechanistic role in QS inhibition. These findings suggest that IQ is a promising antibacterial and anti-QS compound with potential therapeutic applications for managing bacterial infections and biofilm-related complications.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00689-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the antibacterial, antibiofilm, and anti-quorum-sensing (QS) properties of ilimaquinone (IQ) against Gram-positive and Gram-negative pathogens. The agar cup diffusion method revealed significant bacterial inhibition, with minimum inhibitory (MIC) and bactericidal (MBC) concentrations ranging from 6.25 to 25 μM and 12.5 to 50 μM, respectively. IQ exhibited dose-dependent biofilm inhibition, demonstrating its potential as an anti-biofilm agent. QS inhibition was assessed by pigment suppression in Chromobacterium violaceum (violacein), Serratia marcescens (prodigiosin), and Pseudomonas aeruginosa (pyocyanin, pyoverdine), reducing their production by 73.33%, 53.68%, 57.13%, and 62.42%, respectively, at sub-MIC concentrations. IQ also inhibited QS-regulated virulence factors in P. aeruginosa, including LasA protease, elastase, rhamnolipid, and extracellular polymeric substance (EPS) production, disrupting biofilm formation. Molecular docking and dynamics analysis confirmed strong binding affinities of IQ to key QS and biofilm-associated proteins (EsaI, PilY1, LasA, PilT, LasR, RhlR, LasI, PqsR, CviR, and CviR'), highlighting its mechanistic role in QS inhibition. These findings suggest that IQ is a promising antibacterial and anti-QS compound with potential therapeutic applications for managing bacterial infections and biofilm-related complications.

Ilimaquinone作为一种新型海洋海绵来源的抗菌剂:其抗生素膜和群体感应抑制细菌毒力的机制见解。
本研究评价了伊利喹酮(ilimaquinone, IQ)对革兰氏阳性和革兰氏阴性病原菌的抗菌、抗生物膜和抗群体感应(QS)性能。琼脂杯扩散法抑菌效果显著,最低抑菌浓度(MIC)为6.25 ~ 25 μM,杀菌浓度(MBC)为12.5 ~ 50 μM。IQ表现出剂量依赖性的生物膜抑制作用,显示了其作为抗生物膜剂的潜力。通过对紫色色杆菌(紫色素)、粘质沙雷氏菌(芥子红素)和铜绿假单胞菌(pyocyanin, pyoverdine)的色素抑制来评估QS的抑制作用,在亚mic浓度下,它们的产量分别减少了73.33%、53.68%、57.13%和62.42%。IQ还抑制了铜绿假单胞菌中qs调节的毒力因子,包括LasA蛋白酶、弹性蛋白酶、鼠李糖脂和细胞外聚合物(EPS)的产生,破坏了生物膜的形成。分子对接和动力学分析证实了IQ与关键的QS和生物膜相关蛋白(EsaI、PilY1、LasA、PilT、LasR、RhlR、LasI、PqsR、CviR和CviR’)具有很强的结合亲和性,突出了其在QS抑制中的机制作用。这些发现表明IQ是一种很有前景的抗菌和抗qs化合物,在治疗细菌感染和生物膜相关并发症方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信