Jennifer Krznarich, Tessa Schumann, James Bjork, Matthew Slattery, Sarah E Lacher
{"title":"An economical in vitro model of wood smoke exposure.","authors":"Jennifer Krznarich, Tessa Schumann, James Bjork, Matthew Slattery, Sarah E Lacher","doi":"10.1080/08958378.2025.2523297","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The increasing frequency and intensity of wildfires pose significant environmental and public health risks. While existing research has highlighted the effects of wildfire smoke exposure on chronic diseases, the cellular and molecular mechanisms underlying these effects remain unclear. <i>In vitro</i> exposure systems are necessary to dissect the effects of wood smoke on various cell types, but current <i>in vitro</i> exposure systems are often expensive and technically complex. This study introduces the GunSmoke Exposure Chamber (GSEC), a cost-effective, user-friendly system for modeling wildfire smoke exposure.</p><p><strong>Materials and methods: </strong>The GSEC consists of readily available components, including a 25 L egg incubator, a food service smoke infuser gun, and an at-home air quality monitor. The BEAS-2B human bronchial epithelial cell line was used to assess its effectiveness in activating wood smoke-responsive and xenobiotic signaling pathways.</p><p><strong>Results: </strong>Gene expression analysis confirmed activation of the NRF2 and AhR xenobiotic response pathways after wood smoke exposure. The GSEC will allow researchers to model a variety of exposure conditions. The GSEC can also be adapted for more complex protocols, specialized culture systems and a variety of cell types.</p><p><strong>Conclusion: </strong>The GSEC provides an affordable and practical approach for studying wildfire smoke exposure. Its adaptability and accessibility make it a valuable tool for investigating the public health impact of wildfire smoke under different experimental conditions.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-8"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2523297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The increasing frequency and intensity of wildfires pose significant environmental and public health risks. While existing research has highlighted the effects of wildfire smoke exposure on chronic diseases, the cellular and molecular mechanisms underlying these effects remain unclear. In vitro exposure systems are necessary to dissect the effects of wood smoke on various cell types, but current in vitro exposure systems are often expensive and technically complex. This study introduces the GunSmoke Exposure Chamber (GSEC), a cost-effective, user-friendly system for modeling wildfire smoke exposure.
Materials and methods: The GSEC consists of readily available components, including a 25 L egg incubator, a food service smoke infuser gun, and an at-home air quality monitor. The BEAS-2B human bronchial epithelial cell line was used to assess its effectiveness in activating wood smoke-responsive and xenobiotic signaling pathways.
Results: Gene expression analysis confirmed activation of the NRF2 and AhR xenobiotic response pathways after wood smoke exposure. The GSEC will allow researchers to model a variety of exposure conditions. The GSEC can also be adapted for more complex protocols, specialized culture systems and a variety of cell types.
Conclusion: The GSEC provides an affordable and practical approach for studying wildfire smoke exposure. Its adaptability and accessibility make it a valuable tool for investigating the public health impact of wildfire smoke under different experimental conditions.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.