Employing machine learning for identifying antifungal compounds against Candida albicans.

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
Dienny Rodrigues de Souza, Lívia Do Carmo Silva, Kleber Santiago Freitas E Silva, Fabricio Silva de Jesus, Amanda Alves de Oliveira, Bruno Junior Neves, Maristela Pereira
{"title":"Employing machine learning for identifying antifungal compounds against <i>Candida albicans</i>.","authors":"Dienny Rodrigues de Souza, Lívia Do Carmo Silva, Kleber Santiago Freitas E Silva, Fabricio Silva de Jesus, Amanda Alves de Oliveira, Bruno Junior Neves, Maristela Pereira","doi":"10.1080/17460913.2025.2525717","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against <i>Candida albicans</i>.</p><p><strong>Materials & methods: </strong>Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays.</p><p><strong>Results: </strong>Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively.</p><p><strong>Conclusions: </strong>The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"1-11"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2025.2525717","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against Candida albicans.

Materials & methods: Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays.

Results: Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively.

Conclusions: The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.

利用机器学习鉴定抗白色念珠菌的抗真菌化合物。
目的:评估机器学习方法在开发白色念珠菌抗真菌活性分类和回归模型中的有效性。材料和方法:利用RF, SVM和LightGBM算法筛选emmolecules®库。选择17个虚拟命中进行体外检测。结果:11种化合物具有抗白色念珠菌活性。化合物1和17分别在0.51µM和0.071µM处抑制白色念珠菌。结论:RF模型对虚拟筛选是有效的,表明理化分类和回归模型在鉴定抗白色念珠菌新分子方面是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future microbiology
Future microbiology 生物-微生物学
CiteScore
4.90
自引率
3.20%
发文量
134
审稿时长
6-12 weeks
期刊介绍: Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信