Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer's Disease via Network Pharmacology: Emphasis on Oxidative Stress, and the PI3K/Akt Pathway.
Jia Xi Ye, Jia Ying Wu, Min Zhu, Liang Ai, Qihui Huang
{"title":"Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer's Disease via Network Pharmacology: Emphasis on Oxidative Stress, and the PI3K/Akt Pathway.","authors":"Jia Xi Ye, Jia Ying Wu, Min Zhu, Liang Ai, Qihui Huang","doi":"10.2174/0113892010326797250422095516","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The combination of Gardeniae Fructus (ZZ) and Scutellariae Radix (HQ) is a traditional Chinese medicine used for Alzheimer's disease (AD). However, the molecular mechanisms underlying its anti-dementia effects, particularly its multi-component synergy and pathway modulation, remain poorly understood.</p><p><strong>Objective: </strong>Our study employed an integrated systems pharmacology approach to mechanistically decode the anti-AD properties of ZZ-HQ, combining network pharmacology predictions, molecular docking simulations, and experimental validation to identify critical bioactive components, molecular targets, and therapeutic pathways.</p><p><strong>Methods: </strong>A comprehensive network pharmacology analysis was performed to identify bioactive compounds within the ZZ-HQ complex and their potential protein targets associated with AD. Molecular docking was utilized to predict and assess the binding interactions between key bioactive compounds and AD-related protein targets. Experimental validation focused on baicalin, a major active compound in the ZZ-HQ complex, evaluating its effects on cell viability, apoptosis regulation, oxidative stress reduction, and the activation of the PI3K/Akt signaling pathway.</p><p><strong>Results: </strong>Fifty-four bioactive compounds were identified in the ZZ-HQ complex, interacting with 258 AD-associated proteins. Key compounds, such as baicalein and norwogonin, demonstrated strong binding affinities with pivotal proteins, including SRC and PIK3R1. Experimental studies further confirmed that baicalin significantly improved cell viability by activating the PI3K/Akt pathway, reducing apoptosis, and alleviating oxidative stress.</p><p><strong>Conclusion: </strong>Our study uncovered the therapeutic potential of the ZZ-HQ combination in addressing AD through multi-target mechanisms, particularly via modulation of the PI3K/Akt pathway and oxidative stress. These findings provide a scientific basis for the pharmacological effects of ZZ-HQ and offer valuable insights for further research on its potential application in AD treatment.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010326797250422095516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The combination of Gardeniae Fructus (ZZ) and Scutellariae Radix (HQ) is a traditional Chinese medicine used for Alzheimer's disease (AD). However, the molecular mechanisms underlying its anti-dementia effects, particularly its multi-component synergy and pathway modulation, remain poorly understood.
Objective: Our study employed an integrated systems pharmacology approach to mechanistically decode the anti-AD properties of ZZ-HQ, combining network pharmacology predictions, molecular docking simulations, and experimental validation to identify critical bioactive components, molecular targets, and therapeutic pathways.
Methods: A comprehensive network pharmacology analysis was performed to identify bioactive compounds within the ZZ-HQ complex and their potential protein targets associated with AD. Molecular docking was utilized to predict and assess the binding interactions between key bioactive compounds and AD-related protein targets. Experimental validation focused on baicalin, a major active compound in the ZZ-HQ complex, evaluating its effects on cell viability, apoptosis regulation, oxidative stress reduction, and the activation of the PI3K/Akt signaling pathway.
Results: Fifty-four bioactive compounds were identified in the ZZ-HQ complex, interacting with 258 AD-associated proteins. Key compounds, such as baicalein and norwogonin, demonstrated strong binding affinities with pivotal proteins, including SRC and PIK3R1. Experimental studies further confirmed that baicalin significantly improved cell viability by activating the PI3K/Akt pathway, reducing apoptosis, and alleviating oxidative stress.
Conclusion: Our study uncovered the therapeutic potential of the ZZ-HQ combination in addressing AD through multi-target mechanisms, particularly via modulation of the PI3K/Akt pathway and oxidative stress. These findings provide a scientific basis for the pharmacological effects of ZZ-HQ and offer valuable insights for further research on its potential application in AD treatment.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.