Establishment and validation of a model for predicting depression risk in stroke patients.

IF 3.4 2区 医学 Q2 PSYCHIATRY
Fangbo Lin, Meiyun Zhou
{"title":"Establishment and validation of a model for predicting depression risk in stroke patients.","authors":"Fangbo Lin, Meiyun Zhou","doi":"10.1186/s12888-025-06885-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop and validate a clinically applicable nomogram to predict depression risk in stroke patients by integrating multidimensional predictors from rehabilitation assessments, biochemical markers, and lifestyle metrics.</p><p><strong>Methods: </strong>Using data from 767 stroke patients (training/testing: 363/242; external validation: 162) in the CHARLS database and the First Hospital of Changsha, the Least Absolute Shrinkage and Selection Operator (LASSO) regression identified five predictors: Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), sleep (optimal: 6-8 h), uric acid, and Triglyceride-Glucose-Body Mass Index (TyG-BMI). Multivariable logistic regression constructed the nomogram, validated through ROC analysis (AUC), calibration curves, decision curve analysis (DCA), and SHapley Additive exPlanations (SHAP).</p><p><strong>Results: </strong>The nomogram demonstrated moderate to strong discrimination, with AUC values of 0.731 (training), 0.663 (testing), and 0.748 (external validation). Calibration plots confirmed high predictive accuracy, while DCA revealed substantial clinical utility. SHAP analysis ranked sleep (protective) and ADL (risk) as top contributors. Lower uric acid and TyG-BMI correlated with higher depression risk, contrasting prior studies on TyG-BMI.</p><p><strong>Conclusions: </strong>This model enables rapid, cost-effective depression risk stratification using routine clinical data, prioritizing high-risk stroke patients for early intervention. Despite limitations (single-country data, unaddressed stroke subtypes), it bridges predictive analytics and clinical workflows, emphasizing sleep hygiene, metabolic monitoring, and functional rehabilitation.</p>","PeriodicalId":9029,"journal":{"name":"BMC Psychiatry","volume":"25 1","pages":"668"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12888-025-06885-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aimed to develop and validate a clinically applicable nomogram to predict depression risk in stroke patients by integrating multidimensional predictors from rehabilitation assessments, biochemical markers, and lifestyle metrics.

Methods: Using data from 767 stroke patients (training/testing: 363/242; external validation: 162) in the CHARLS database and the First Hospital of Changsha, the Least Absolute Shrinkage and Selection Operator (LASSO) regression identified five predictors: Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), sleep (optimal: 6-8 h), uric acid, and Triglyceride-Glucose-Body Mass Index (TyG-BMI). Multivariable logistic regression constructed the nomogram, validated through ROC analysis (AUC), calibration curves, decision curve analysis (DCA), and SHapley Additive exPlanations (SHAP).

Results: The nomogram demonstrated moderate to strong discrimination, with AUC values of 0.731 (training), 0.663 (testing), and 0.748 (external validation). Calibration plots confirmed high predictive accuracy, while DCA revealed substantial clinical utility. SHAP analysis ranked sleep (protective) and ADL (risk) as top contributors. Lower uric acid and TyG-BMI correlated with higher depression risk, contrasting prior studies on TyG-BMI.

Conclusions: This model enables rapid, cost-effective depression risk stratification using routine clinical data, prioritizing high-risk stroke patients for early intervention. Despite limitations (single-country data, unaddressed stroke subtypes), it bridges predictive analytics and clinical workflows, emphasizing sleep hygiene, metabolic monitoring, and functional rehabilitation.

脑卒中患者抑郁风险预测模型的建立与验证。
目的:本研究旨在通过整合康复评估、生化指标和生活方式指标等多维预测因素,开发并验证一种临床适用的脑卒中患者抑郁风险预测图。方法:使用767例脑卒中患者的数据(训练/测试:363/242;外部验证:162)在CHARLS数据库和长沙市第一医院中,最小绝对收缩和选择操作(LASSO)回归确定了五个预测因子:日常生活活动(ADL)、日常生活工具活动(IADL)、睡眠(最佳:6-8小时)、尿酸和甘油三酯-葡萄糖-体重指数(TyG-BMI)。多变量逻辑回归构建了正态图,并通过ROC分析(AUC)、校准曲线、决策曲线分析(DCA)和SHapley加性解释(SHAP)进行验证。结果:nomogram具有中强判别性,AUC值分别为0.731 (training)、0.663 (testing)和0.748 (external validation)。校准图证实了较高的预测准确性,而DCA显示了大量的临床应用。SHAP分析将睡眠(保护性)和ADL(风险)列为主要影响因素。与之前关于TyG-BMI的研究相比,较低的尿酸和TyG-BMI与较高的抑郁风险相关。结论:该模型可以使用常规临床数据进行快速、经济有效的抑郁风险分层,优先考虑高危卒中患者进行早期干预。尽管存在局限性(单一国家数据、未解决的中风亚型),但它将预测分析与临床工作流程联系起来,强调睡眠卫生、代谢监测和功能康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Psychiatry
BMC Psychiatry 医学-精神病学
CiteScore
5.90
自引率
4.50%
发文量
716
审稿时长
3-6 weeks
期刊介绍: BMC Psychiatry is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of psychiatric disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信