{"title":"Automated 3D segmentation of the hyoid bone in CBCT using nnU-Net v2: a retrospective study on model performance and potential clinical utility.","authors":"Ismail Gümüssoy, Emre Haylaz, Suayip Burak Duman, Fahrettin Kalabalik, Seyda Say, Ozer Celik, Ibrahim Sevki Bayrakdar","doi":"10.1186/s12880-025-01797-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to identify the hyoid bone (HB) using the nnU-Net based artificial intelligence (AI) model in cone beam computed tomography (CBCT) images and assess the model's success in automatic segmentation.</p><p><strong>Methods: </strong>CBCT images of 190 patients were randomly selected. The raw data was converted to DICOM format and transferred to the 3D Slicer Imaging Software (Version 4.10.2; MIT, Cambridge, MA, USA). HB was labeled manually using the 3D Slicer. The dataset was divided into training, validation, and test sets in a ratio of 8:1:1. The nnU-Net v2 architecture was utilized to process the training and test datasets, generating the algorithm weight factors. To assess the model's accuracy and performance, a confusion matrix was employed. F1-score, Dice coefficient (DC), 95% Hausdorff distance (95% HD), and Intersection over Union (IoU) metrics were calculated to evaluate the results.</p><p><strong>Results: </strong>The model's performance metrics were as follows: DC = 0.9434, IoU = 0.8941, F1-score = 0.9446, and 95% HD = 1.9998. The receiver operating characteristic (ROC) curve was generated, yielding an AUC value of 0.98.</p><p><strong>Conclusion: </strong>The results indicated that the nnU-Net v2 model achieved high precision and accuracy in HB segmentation on CBCT images. Automatic segmentation of HB can enhance clinicians' decision-making speed and accuracy in diagnosing and treating various clinical conditions.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"217"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01797-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to identify the hyoid bone (HB) using the nnU-Net based artificial intelligence (AI) model in cone beam computed tomography (CBCT) images and assess the model's success in automatic segmentation.
Methods: CBCT images of 190 patients were randomly selected. The raw data was converted to DICOM format and transferred to the 3D Slicer Imaging Software (Version 4.10.2; MIT, Cambridge, MA, USA). HB was labeled manually using the 3D Slicer. The dataset was divided into training, validation, and test sets in a ratio of 8:1:1. The nnU-Net v2 architecture was utilized to process the training and test datasets, generating the algorithm weight factors. To assess the model's accuracy and performance, a confusion matrix was employed. F1-score, Dice coefficient (DC), 95% Hausdorff distance (95% HD), and Intersection over Union (IoU) metrics were calculated to evaluate the results.
Results: The model's performance metrics were as follows: DC = 0.9434, IoU = 0.8941, F1-score = 0.9446, and 95% HD = 1.9998. The receiver operating characteristic (ROC) curve was generated, yielding an AUC value of 0.98.
Conclusion: The results indicated that the nnU-Net v2 model achieved high precision and accuracy in HB segmentation on CBCT images. Automatic segmentation of HB can enhance clinicians' decision-making speed and accuracy in diagnosing and treating various clinical conditions.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.