Shruthi S Garimella, Shiaki A Minami, Anusha N Khanchandani, Justin C Abad Santos, Susannah R Schaffer, Priya S Shah
{"title":"A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.","authors":"Shruthi S Garimella, Shiaki A Minami, Anusha N Khanchandani, Justin C Abad Santos, Susannah R Schaffer, Priya S Shah","doi":"10.1186/s12896-025-00994-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optogenetic systems use light-responsive proteins to control gene expression, ion channels, protein localization, and signaling with the \"flip of a switch\". One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.</p><p><strong>Results: </strong>The two-plasmid LACE (2pLACE) system combines the four components of the original LACE system into two plasmids. Following construction, the behavior of 2pLACE was rigorously tested using optogenetic control of enhanced green fluorescent protein (eGFP) expression as a reporter. Using human HEK293T cells, we optimized the ratio of the two plasmids, measured activation as a function of light intensity, and determined the frequency of the light to activate the maximum fluorescence. Overall, the 2pLACE system showed a similar dynamic range, tunability, and activation kinetics as the original four plasmid LACE (4pLACE) system. Interestingly, 2pLACE also had less variability in activation signal compared to 4pLACE. We also demonstrate the optimal LACE system also depends on cell type. In mouse myoblast C2C12 cells, 2pLACE displayed less variability compared to 4pLACE, similar to HEK293T cells. However, 2pLACE also had a smaller dynamic range in C2C12 cells compared to 4pLACE.</p><p><strong>Conclusions: </strong>This simplified system for optogenetics will be more amenable to biotechnology applications where variability needs to be minimized. By optimizing the LACE system to use fewer plasmids, 2pLACE becomes a flexible tool in multiple research applications. However, the optimal system may depend on cell type and application.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"58"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00994-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Optogenetic systems use light-responsive proteins to control gene expression, ion channels, protein localization, and signaling with the "flip of a switch". One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.
Results: The two-plasmid LACE (2pLACE) system combines the four components of the original LACE system into two plasmids. Following construction, the behavior of 2pLACE was rigorously tested using optogenetic control of enhanced green fluorescent protein (eGFP) expression as a reporter. Using human HEK293T cells, we optimized the ratio of the two plasmids, measured activation as a function of light intensity, and determined the frequency of the light to activate the maximum fluorescence. Overall, the 2pLACE system showed a similar dynamic range, tunability, and activation kinetics as the original four plasmid LACE (4pLACE) system. Interestingly, 2pLACE also had less variability in activation signal compared to 4pLACE. We also demonstrate the optimal LACE system also depends on cell type. In mouse myoblast C2C12 cells, 2pLACE displayed less variability compared to 4pLACE, similar to HEK293T cells. However, 2pLACE also had a smaller dynamic range in C2C12 cells compared to 4pLACE.
Conclusions: This simplified system for optogenetics will be more amenable to biotechnology applications where variability needs to be minimized. By optimizing the LACE system to use fewer plasmids, 2pLACE becomes a flexible tool in multiple research applications. However, the optimal system may depend on cell type and application.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.