Beena Briget Kuriakose, Ahmed Hjazi, Raed Obaid Saleh, Ashok Kumar Bishoyi, S Renuka Jyothi, Sami G Almalki, G Sridevi, Kamlesh Chaudhary, Ahmed Hussein Zwamel, O Matchonov
{"title":"LncRNAs in hypoxic microenvironment; insight in their impact in cancer biology.","authors":"Beena Briget Kuriakose, Ahmed Hjazi, Raed Obaid Saleh, Ashok Kumar Bishoyi, S Renuka Jyothi, Sami G Almalki, G Sridevi, Kamlesh Chaudhary, Ahmed Hussein Zwamel, O Matchonov","doi":"10.1007/s10142-025-01635-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia may facilitate metastasis and tumor advancement in solid tumors. Intratumoral hypoxia may facilitate tumor aggressiveness by stabilizing hypoxia-inducible factor-1α (HIF-1α). Various transcriptional and epigenetic pathways modulate hypoxia-stimulated gene expression and tumor progression. Noncoding RNAs longer than 200 nt are long noncoding RNAs (lncRNAs). Current lncRNA profiling in several human tumor types revealed that lncRNA expression and deregulation vary by tumor type and may undergo transcriptional, genomic, and epigenetic modifications. LncRNAs controlled by hypoxia have emerged as a prominent focus in hypoxia-regulated biology due to their ability to influence multiple biological procedures associated with tumorigenesis. Hypoxia-regulated lncRNAs may influence tumor development, growth, anti-apoptosis, migration, invasion, angiogenesis, and tumor metabolism. In this light, hypoxia-inducible lncRNAs could interact with protein/protein complex and chromatin/epigenetic factors and another mechanism, thus favoring tumorigenesis. Conversely, lncRNAs may control hypoxia signaling by stabilizing HIF-1α via several mechanisms. Nonetheless, several undiscovered lncRNAs remain that may mediate or regulate the hypoxia axis. Consequently, the novel lncRNAs modulated by hypoxia or that influence hypoxia signaling have yet to be discovered and thoroughly described. Herein, we aim to classify suitable lncRNA targets to offer a feasible therapeutic modality for hypoxia-driven cancers.</p>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":"142"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10142-025-01635-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia may facilitate metastasis and tumor advancement in solid tumors. Intratumoral hypoxia may facilitate tumor aggressiveness by stabilizing hypoxia-inducible factor-1α (HIF-1α). Various transcriptional and epigenetic pathways modulate hypoxia-stimulated gene expression and tumor progression. Noncoding RNAs longer than 200 nt are long noncoding RNAs (lncRNAs). Current lncRNA profiling in several human tumor types revealed that lncRNA expression and deregulation vary by tumor type and may undergo transcriptional, genomic, and epigenetic modifications. LncRNAs controlled by hypoxia have emerged as a prominent focus in hypoxia-regulated biology due to their ability to influence multiple biological procedures associated with tumorigenesis. Hypoxia-regulated lncRNAs may influence tumor development, growth, anti-apoptosis, migration, invasion, angiogenesis, and tumor metabolism. In this light, hypoxia-inducible lncRNAs could interact with protein/protein complex and chromatin/epigenetic factors and another mechanism, thus favoring tumorigenesis. Conversely, lncRNAs may control hypoxia signaling by stabilizing HIF-1α via several mechanisms. Nonetheless, several undiscovered lncRNAs remain that may mediate or regulate the hypoxia axis. Consequently, the novel lncRNAs modulated by hypoxia or that influence hypoxia signaling have yet to be discovered and thoroughly described. Herein, we aim to classify suitable lncRNA targets to offer a feasible therapeutic modality for hypoxia-driven cancers.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?