Murshid Muhammed P K, Madhuri C Pagariya, Pritam R Jadhav, Nikita S Gawade, Dipak K Sarode, Suhas Gorakh Karkute, Hemant B Kardile, Rupesh Deshmukh, Suprasanna Penna, Prashant G Kawar
{"title":"Advancing ornamental plant breeding through genomic technologies: opportunities, challenges, and future directions.","authors":"Murshid Muhammed P K, Madhuri C Pagariya, Pritam R Jadhav, Nikita S Gawade, Dipak K Sarode, Suhas Gorakh Karkute, Hemant B Kardile, Rupesh Deshmukh, Suprasanna Penna, Prashant G Kawar","doi":"10.1007/s10142-025-01640-y","DOIUrl":null,"url":null,"abstract":"<p><p>The ornamental plants constitute an important sector of horticulture industry, which are worth billions of dollars worldwide. There is a growing demand for new and improved cultivars and hence, breeders employ new tools and methods to address the problem of plant improvement. Recent advancements in Ornamental plant genomics have seen a great revolution due to new technologies of whole genome sequencing which have created previously unheard-of breeding program prospects. Research into gene regulation, genomic variations, genome evolution, and other biological processes are now aided by the use of complete genome sequencing data. The assembly of high-quality genomes for various ornamental species has facilitated the identification of genes controlling desirable traits such as flower color, shape, fragrance, biotic and abiotic stress resistance. The CRISPR/Cas9 based genome editing technology has offered immense scope for ornamental plant improvement through the enhancement of floral characteristics. Herein, we discuss how these genomic resources can be leveraged to improve breeding efficiency, accelerate the development of novel cultivars to augment the sustainability of the ornamental plant industry. This review aims to provide a viewpoint for the application of whole genome sequencing in ornamental plant breeding, highlighting the opportunities, challenges, and future prospects.</p>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":"140"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10142-025-01640-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The ornamental plants constitute an important sector of horticulture industry, which are worth billions of dollars worldwide. There is a growing demand for new and improved cultivars and hence, breeders employ new tools and methods to address the problem of plant improvement. Recent advancements in Ornamental plant genomics have seen a great revolution due to new technologies of whole genome sequencing which have created previously unheard-of breeding program prospects. Research into gene regulation, genomic variations, genome evolution, and other biological processes are now aided by the use of complete genome sequencing data. The assembly of high-quality genomes for various ornamental species has facilitated the identification of genes controlling desirable traits such as flower color, shape, fragrance, biotic and abiotic stress resistance. The CRISPR/Cas9 based genome editing technology has offered immense scope for ornamental plant improvement through the enhancement of floral characteristics. Herein, we discuss how these genomic resources can be leveraged to improve breeding efficiency, accelerate the development of novel cultivars to augment the sustainability of the ornamental plant industry. This review aims to provide a viewpoint for the application of whole genome sequencing in ornamental plant breeding, highlighting the opportunities, challenges, and future prospects.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?