Orthogonal alignment of multilayered MC3T3-E1 cells induced by cyclic stretch.

IF 3 3区 医学 Q2 BIOPHYSICS
Shuichiro Suzuki, Ken Imajo, Junfeng Wang, Jeonghyun Kim, Eijiro Maeda, Kazuaki Nagayama, Takeo Matsumoto
{"title":"Orthogonal alignment of multilayered MC3T3-E1 cells induced by cyclic stretch.","authors":"Shuichiro Suzuki, Ken Imajo, Junfeng Wang, Jeonghyun Kim, Eijiro Maeda, Kazuaki Nagayama, Takeo Matsumoto","doi":"10.1007/s10237-025-01978-z","DOIUrl":null,"url":null,"abstract":"<p><p>When cyclic stretch is applied to a monolayer of cells cultured on an elastic substrate, many types of cells align in the direction perpendicular to the stretch or along the direction of minimal substrate strain. However, the behavior of multilayer cells under cyclic stretch remains unclear. In this study, we cultured MC3T3-E1 osteoblast-like cells at high density to form multilayer cells and subjected them to cyclic stretch with an amplitude of 10% at 1 Hz. We found that the lower layer cells aligned in the direction of the stretch after 12 h, whereas the upper layer cells aligned perpendicular to the direction of stretch after 24 h. The 10% cyclic stretch was transmitted to the upper layer cells as approximately 5% at the onset of the stretch and increased over time, reaching 7% at 12 h when the lower layer cells completed alignment in the direction of stretch. This suggests that sufficient cyclic stretch transmitted to the upper layer led to the alignment of the upper layer cells in the perpendicular direction after 12 h. On the other hand, reducing intracellular tension with Y-27632 caused cells in both upper and lower layers to align in the direction of stretch. In contrast, increasing intracellular tension with calyculin A eliminated significant alignment in both layers. These findings indicate that cell alignment is closely related to intracellular tension and that the alignment of the lower layer cells in the direction of stretch may be due to a decrease in intracellular tension.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01978-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

When cyclic stretch is applied to a monolayer of cells cultured on an elastic substrate, many types of cells align in the direction perpendicular to the stretch or along the direction of minimal substrate strain. However, the behavior of multilayer cells under cyclic stretch remains unclear. In this study, we cultured MC3T3-E1 osteoblast-like cells at high density to form multilayer cells and subjected them to cyclic stretch with an amplitude of 10% at 1 Hz. We found that the lower layer cells aligned in the direction of the stretch after 12 h, whereas the upper layer cells aligned perpendicular to the direction of stretch after 24 h. The 10% cyclic stretch was transmitted to the upper layer cells as approximately 5% at the onset of the stretch and increased over time, reaching 7% at 12 h when the lower layer cells completed alignment in the direction of stretch. This suggests that sufficient cyclic stretch transmitted to the upper layer led to the alignment of the upper layer cells in the perpendicular direction after 12 h. On the other hand, reducing intracellular tension with Y-27632 caused cells in both upper and lower layers to align in the direction of stretch. In contrast, increasing intracellular tension with calyculin A eliminated significant alignment in both layers. These findings indicate that cell alignment is closely related to intracellular tension and that the alignment of the lower layer cells in the direction of stretch may be due to a decrease in intracellular tension.

循环拉伸诱导多层MC3T3-E1细胞的正交排列。
当循环拉伸作用于在弹性底物上培养的单层细胞时,许多类型的细胞沿垂直于拉伸方向或沿最小底物应变方向排列。然而,多层细胞在循环拉伸下的行为尚不清楚。在本研究中,我们高密度培养MC3T3-E1成骨样细胞,形成多层细胞,并在1hz下进行幅度为10%的循环拉伸。我们发现,下层细胞在12 h后沿拉伸方向排列,而上层细胞在24 h后垂直于拉伸方向排列。10%的循环拉伸在拉伸开始时传递给上层细胞,约为5%,随着时间的推移增加,在12 h时达到7%,下层细胞完成拉伸方向排列。这表明,充分的循环拉伸传递到上层,导致上层细胞在12 h后沿垂直方向排列。另一方面,Y-27632降低细胞内张力,导致上层和下层细胞沿拉伸方向排列。相反,calyculin A增加细胞内张力消除了两层的显著排列。这些发现表明,细胞排列与细胞内张力密切相关,下层细胞在拉伸方向的排列可能是由于细胞内张力的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信