{"title":"Efficient Biosynthesis of Polyhydroxybutyrate from Xylose via an In Vitro Synthetic Enzymatic Biosystem with Self-Sustained Cofactor Regeneration.","authors":"Boyu Qiu, Xinlei Wei, Chun You","doi":"10.1002/cbic.202500387","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro biotransformation (ivBT) mediated by in vitro synthetic enzymatic biosystems (ivSEBs) represents a highly promising platform for sustainable biomanufacturing, offering enhanced reaction efficiency by circumventing cellular constraints. In this study, we developed an ivSEB comprising 17 enzymes for the cell-free biosynthesis of polyhydroxybutyrate (PHB) from D-xylose via the acetyl-coenzyme A. This ivSEB integrates partial glycolysis and the pentose phosphate pathway, enabling self-sustained balance of several cofactors including coenzyme A (CoA), NADP+/NADPH and ATP/ADP. Stoichiometric analysis demonstrated a theoretical molar yield of PHB from xylose of 111.1%. Through optimizing concentrations of cofactors and enzymes, the one-pot reaction produced 44.0 mM (3.8 g/L) PHB from 44.8 mM (6.7 g/L) xylose, corresponding to a molar yield of 98.2%. Even at a higher substrate concentration (13.5 g/L), the yield remained robust (84.5%). This study demonstrated the potential of ivSEB as a scalable and efficient approach for the large-scale production of PHB and other xylose-based or acetyl-CoA-derived chemicals.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500387"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500387","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro biotransformation (ivBT) mediated by in vitro synthetic enzymatic biosystems (ivSEBs) represents a highly promising platform for sustainable biomanufacturing, offering enhanced reaction efficiency by circumventing cellular constraints. In this study, we developed an ivSEB comprising 17 enzymes for the cell-free biosynthesis of polyhydroxybutyrate (PHB) from D-xylose via the acetyl-coenzyme A. This ivSEB integrates partial glycolysis and the pentose phosphate pathway, enabling self-sustained balance of several cofactors including coenzyme A (CoA), NADP+/NADPH and ATP/ADP. Stoichiometric analysis demonstrated a theoretical molar yield of PHB from xylose of 111.1%. Through optimizing concentrations of cofactors and enzymes, the one-pot reaction produced 44.0 mM (3.8 g/L) PHB from 44.8 mM (6.7 g/L) xylose, corresponding to a molar yield of 98.2%. Even at a higher substrate concentration (13.5 g/L), the yield remained robust (84.5%). This study demonstrated the potential of ivSEB as a scalable and efficient approach for the large-scale production of PHB and other xylose-based or acetyl-CoA-derived chemicals.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).