From Charge Storage Rulebook Rewriting to Commercial Viability of Zinc-Manganese Batteries.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinhua Zheng, Bibo Han, Shikai Liu, Shiya Huang, Song Wu, Mingyan Chuai, Faxing Wang, Yuping Wu
{"title":"From Charge Storage Rulebook Rewriting to Commercial Viability of Zinc-Manganese Batteries.","authors":"Xinhua Zheng, Bibo Han, Shikai Liu, Shiya Huang, Song Wu, Mingyan Chuai, Faxing Wang, Yuping Wu","doi":"10.1002/advs.202509520","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-manganese oxide (Zn-MNO) batteries represent a compelling solution for grid-scale energy storage due to their inherent safety, cost-effectiveness and ecological compatibility. However, the commercialization of this technology faces critical challenges including insufficient electrode durability, limited areal capacity output, and fundamentally ambiguous charge storage principles, which collectively hinder practical implementation. Through systematic mechanistic investigation, a previously overlooked phase evolution paradigm is revealed. It involves that Mn<sub>3</sub>O<sub>4</sub> cathode undergoes a partially in situ phase transition to MnO<sub>2</sub> during the initial charging process, forming a hybrid Mn<sub>3</sub>O<sub>4</sub>/MnO<sub>2</sub> cathode. This self-optimized heterostructure synergistically combines structural reinforcement frameworks with enhanced ion-transport networks, enabling exceptional cycling stability over 4,500 cycles while maintaining record-high areal capacity (10 mAh cm<sup>-2</sup>). The clarified dual-ion (H<sup>+</sup>/Zn<sup>2+</sup>) coordination mechanism and stabilized Mn<sup>2+</sup>/MnO<sub>2</sub> redox chemistry establish new design principles for manganese-based cathodes. More importantly, unprecedented scalability is demonstrated through constructing pouch cells (200 mAh) with 1000-cycle durability, achieving a practical energy density of 54 Wh kg<sup>-1</sup>. The integrated solar-powered battery system exhibits remarkable operational safety under extreme conditions (piercing, cutting), representing one of the most practically viable Zn-MNO batteries reported to date. This work bridges fundamental mechanistic understanding with industrial-grade device engineering, charting a concrete pathway toward terawatt-hour scale renewable energy storage.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e09520"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202509520","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-manganese oxide (Zn-MNO) batteries represent a compelling solution for grid-scale energy storage due to their inherent safety, cost-effectiveness and ecological compatibility. However, the commercialization of this technology faces critical challenges including insufficient electrode durability, limited areal capacity output, and fundamentally ambiguous charge storage principles, which collectively hinder practical implementation. Through systematic mechanistic investigation, a previously overlooked phase evolution paradigm is revealed. It involves that Mn3O4 cathode undergoes a partially in situ phase transition to MnO2 during the initial charging process, forming a hybrid Mn3O4/MnO2 cathode. This self-optimized heterostructure synergistically combines structural reinforcement frameworks with enhanced ion-transport networks, enabling exceptional cycling stability over 4,500 cycles while maintaining record-high areal capacity (10 mAh cm-2). The clarified dual-ion (H+/Zn2+) coordination mechanism and stabilized Mn2+/MnO2 redox chemistry establish new design principles for manganese-based cathodes. More importantly, unprecedented scalability is demonstrated through constructing pouch cells (200 mAh) with 1000-cycle durability, achieving a practical energy density of 54 Wh kg-1. The integrated solar-powered battery system exhibits remarkable operational safety under extreme conditions (piercing, cutting), representing one of the most practically viable Zn-MNO batteries reported to date. This work bridges fundamental mechanistic understanding with industrial-grade device engineering, charting a concrete pathway toward terawatt-hour scale renewable energy storage.

从充电存储规则手册重写到锌锰电池的商业可行性。
含水锌锰氧化物(Zn-MNO)电池由于其固有的安全性、成本效益和生态兼容性,代表了电网规模储能的一个引人注目的解决方案。然而,该技术的商业化面临着严峻的挑战,包括电极耐用性不足,面容量输出有限,以及根本上模棱两可的电荷存储原理,这些都阻碍了实际实施。通过系统的机制研究,揭示了一个以前被忽视的相演化范式。它涉及到在初始充电过程中,Mn3O4阴极向MnO2发生部分原位相变,形成Mn3O4/MnO2杂化阴极。这种自我优化的异质结构将结构加固框架与增强的离子传输网络协同结合,在4500次循环中实现了卓越的循环稳定性,同时保持了创纪录的高面容量(10 mAh cm-2)。明确的双离子(H+/Zn2+)配位机理和稳定的Mn2+/MnO2氧化还原化学为锰基阴极的设计奠定了新的原则。更重要的是,通过构建具有1000次循环耐久性的袋状电池(200 mAh),实现了54 Wh kg-1的实际能量密度,展示了前所未有的可扩展性。集成太阳能电池系统在极端条件下(穿刺、切割)表现出卓越的操作安全性,是迄今为止报道的最实际可行的锌- mno电池之一。这项工作将基本的机械理解与工业级设备工程联系起来,为实现太瓦时规模的可再生能源存储绘制了一条具体的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信