Metabolic click-labeling of interleukin-10 enhances the immunomodulatory potential and wound healing properties of mesenchymal stem cell-derived extracellular nanovesicles.
Hee Gyeong Ko, Yun-A Kim, Jun Kwon, So Won Jeon, Jong Sang Yoon, Min-Ho Kang, Ju-Ro Lee, Han Young Kim
{"title":"Metabolic click-labeling of interleukin-10 enhances the immunomodulatory potential and wound healing properties of mesenchymal stem cell-derived extracellular nanovesicles.","authors":"Hee Gyeong Ko, Yun-A Kim, Jun Kwon, So Won Jeon, Jong Sang Yoon, Min-Ho Kang, Ju-Ro Lee, Han Young Kim","doi":"10.1039/d4bm01601g","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cell-derived extracellular nanovesicles (MSC-NVs) exhibit unique biological properties and tissue-regenerative effects comparable to their parent MSCs. However, despite the robust angiogenic and anti-apoptotic effects of MSC-NVs, their immunomodulatory effect is limited due to insufficient translation of anti-inflammatory cytokines from parent MSCs to isolated NVs. Hence, in this study we suggest the incorporation of interleukin (IL)-10, a key anti-inflammatory mediator in the body's immune system, on the surface of MSC-NVs <i>via</i> bio-orthogonal click chemistry. Metabolically engineered MSCs were serially extruded to generate azido-displaying MSC-NV-N<sub>3</sub>, followed by click chemistry-based conjugation of IL-10. Synthesized MSC-NV/IL-10 exhibited superior abilities for cell proliferation and migration of fibroblast and endothelial cells. MSC-NV/IL-10 markedly attenuated the activity of the pro-inflammatory M1 macrophage and promoted the expression of the anti-inflammatory M2 marker. We also demonstrated that MSC-NV/IL-10 induces the phenotypic transition of dendritic cells (DCs) from mature DCs to immune-tolerogenic DCs. Moreover, RNA sequencing revealed that metabolic engineering does not alter the regenerative potential or immunomodulatory functions of MSCs. In animal studies, MSC-NV/IL-10 treated mice exhibited significantly accelerated wound healing, accompanied by resolution of inflammatory responses in injured skin.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01601g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cell-derived extracellular nanovesicles (MSC-NVs) exhibit unique biological properties and tissue-regenerative effects comparable to their parent MSCs. However, despite the robust angiogenic and anti-apoptotic effects of MSC-NVs, their immunomodulatory effect is limited due to insufficient translation of anti-inflammatory cytokines from parent MSCs to isolated NVs. Hence, in this study we suggest the incorporation of interleukin (IL)-10, a key anti-inflammatory mediator in the body's immune system, on the surface of MSC-NVs via bio-orthogonal click chemistry. Metabolically engineered MSCs were serially extruded to generate azido-displaying MSC-NV-N3, followed by click chemistry-based conjugation of IL-10. Synthesized MSC-NV/IL-10 exhibited superior abilities for cell proliferation and migration of fibroblast and endothelial cells. MSC-NV/IL-10 markedly attenuated the activity of the pro-inflammatory M1 macrophage and promoted the expression of the anti-inflammatory M2 marker. We also demonstrated that MSC-NV/IL-10 induces the phenotypic transition of dendritic cells (DCs) from mature DCs to immune-tolerogenic DCs. Moreover, RNA sequencing revealed that metabolic engineering does not alter the regenerative potential or immunomodulatory functions of MSCs. In animal studies, MSC-NV/IL-10 treated mice exhibited significantly accelerated wound healing, accompanied by resolution of inflammatory responses in injured skin.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.