{"title":"Rust and redemption: iron-sulfur clusters and oxygen in human disease and health.","authors":"Shany Egozi, Tslil Ast","doi":"10.1093/mtomcs/mfaf022","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-sulfur (Fe-S) clusters are ancient and versatile cofactors that drive essential cellular functions, from electron transport to enzyme catalysis. Their intrinsic sensitivity to oxidation has shaped the evolution of specialized Fe-S cluster biosynthetic and protective mechanisms. Recent findings highlight how human Fe-S-binding regulators exploit this cofactor's reactivity to sense iron and oxygen levels, translating environmental cues into appropriate homeostatic responses. Yet, the same redox sensitivity also renders Fe-S cluster proteins and biosynthesis particularly vulnerable to high oxygen tensions, contributing to pathological outcomes. In this minireview, we examine key discoveries illustrating how Fe-S clusters and oxygen intersect to influence both human health and disease. Finally, we discuss how identifying novel Fe-S targets and regulatory circuits may open innovative therapeutic avenues-harnessing oxygen itself as a strategic element in managing relevant disorders.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfaf022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-sulfur (Fe-S) clusters are ancient and versatile cofactors that drive essential cellular functions, from electron transport to enzyme catalysis. Their intrinsic sensitivity to oxidation has shaped the evolution of specialized Fe-S cluster biosynthetic and protective mechanisms. Recent findings highlight how human Fe-S-binding regulators exploit this cofactor's reactivity to sense iron and oxygen levels, translating environmental cues into appropriate homeostatic responses. Yet, the same redox sensitivity also renders Fe-S cluster proteins and biosynthesis particularly vulnerable to high oxygen tensions, contributing to pathological outcomes. In this minireview, we examine key discoveries illustrating how Fe-S clusters and oxygen intersect to influence both human health and disease. Finally, we discuss how identifying novel Fe-S targets and regulatory circuits may open innovative therapeutic avenues-harnessing oxygen itself as a strategic element in managing relevant disorders.