Reinvented sodium anode by creating a metal-bulk storage matrix with an expanded 3D plating/stripping mechanism

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chutao Wang, Kun Wang, Hongbin Ni, Congcong Du, Xiaoting Yin, Jingmin Fan, Ruming Yuan, Yuxin Tang, Jiawei Yan, Mingsen Zheng, Quanfeng Dong
{"title":"Reinvented sodium anode by creating a metal-bulk storage matrix with an expanded 3D plating/stripping mechanism","authors":"Chutao Wang,&nbsp;Kun Wang,&nbsp;Hongbin Ni,&nbsp;Congcong Du,&nbsp;Xiaoting Yin,&nbsp;Jingmin Fan,&nbsp;Ruming Yuan,&nbsp;Yuxin Tang,&nbsp;Jiawei Yan,&nbsp;Mingsen Zheng,&nbsp;Quanfeng Dong","doi":"10.1126/sciadv.adw5701","DOIUrl":null,"url":null,"abstract":"<div >Direct metal anodes are plating/stripping processes without a supporting framework and bulk ion conductivity; they are the electrodes susceptible to collapse and limiting the electrochemical reaction to the two-dimensional surface. The focus of this era is mostly on building a solid electrolyte interface (SEI). However, simply building protective layers cannot address essential issues; a thorough transformation of the metal electrode bulk is critical. We propose a reconstructed sodium metal anode (RSMA) by implanting an activatable ion-conductive network to the bulk. NaPF<sub>6</sub> will be activated with an electrolyte to conduct ions and form an anion-derived SEI. Conductive polymers become the supporting skeleton; thus, the RSMA has a metal-bulk storage matrix and an expanded three-dimensional plating/stripping mechanism and permits the homogeneous deposition/dissolution of Na<sup>+</sup> in high dimensions. Last, RSMA symmetric cells were stably cycled for 2700 hours and achieved a 100% depth of discharge. RSMA||PB cells can achieve 10-coulomb cycling and a proof-of-concept pouch cell energy density of 367 watt-hours per kilogram.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw5701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw5701","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Direct metal anodes are plating/stripping processes without a supporting framework and bulk ion conductivity; they are the electrodes susceptible to collapse and limiting the electrochemical reaction to the two-dimensional surface. The focus of this era is mostly on building a solid electrolyte interface (SEI). However, simply building protective layers cannot address essential issues; a thorough transformation of the metal electrode bulk is critical. We propose a reconstructed sodium metal anode (RSMA) by implanting an activatable ion-conductive network to the bulk. NaPF6 will be activated with an electrolyte to conduct ions and form an anion-derived SEI. Conductive polymers become the supporting skeleton; thus, the RSMA has a metal-bulk storage matrix and an expanded three-dimensional plating/stripping mechanism and permits the homogeneous deposition/dissolution of Na+ in high dimensions. Last, RSMA symmetric cells were stably cycled for 2700 hours and achieved a 100% depth of discharge. RSMA||PB cells can achieve 10-coulomb cycling and a proof-of-concept pouch cell energy density of 367 watt-hours per kilogram.

Abstract Image

通过创建具有扩展3D电镀/剥离机制的金属散装存储矩阵,重新发明了钠阳极
直接金属阳极是没有支撑框架和大块离子电导率的电镀/剥离工艺;它们是易坍塌的电极,将电化学反应限制在二维表面。这个时代的重点主要是建立一个固体电解质界面(SEI)。然而,仅仅建立保护层并不能解决根本问题;金属电极体的彻底转变是至关重要的。我们提出了一种重构的金属钠阳极(RSMA),通过植入一个可活化的离子导电网络到体。NaPF6将被电解质激活以传导离子并形成阴离子衍生的SEI。导电聚合物成为支撑骨架;因此,RSMA具有金属体存储基体和扩展的三维电镀/剥离机制,并允许在高维上均匀沉积/溶解Na+。最后,RSMA对称电池稳定循环2700小时,达到100%放电深度。RSMA||PB电池可以实现10库伦循环,概念验证袋电池能量密度为每千克367瓦时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信