D. Kim, V. Lekić, M. A. Wieczorek, N. C. Schmerr, G. S. Collins, M. P. Panning
{"title":"A New Lunar Crustal Thickness Model Constrained by Converted Seismic Waves Detected Beneath the Apollo Seismic Network","authors":"D. Kim, V. Lekić, M. A. Wieczorek, N. C. Schmerr, G. S. Collins, M. P. Panning","doi":"10.1029/2024GL114506","DOIUrl":null,"url":null,"abstract":"<p>Analysis of conversions between compressional and shear waves is a workhorse method for constraining crustal and lithospheric structure on Earth; yet, such converted waves have not been unequivocally identified in seismic data from the largest events on the Moon, due to the highly scattered waveforms of shallow seismic events. We reanalyze the polarization attributes of waveforms recorded by the Apollo seismic network to identify signals with rectilinear particle motion below 1 Hz, arising from conversions across the crust-mantle boundary. Delay times of these converted waves are inverted to estimate crustal thickness and wavespeeds beneath the seismometers. Combined with gravimetric modeling, these new crustal thickness tie-points yield an updated lunar crustal model with an average thickness of 29–47 km. Unlike previous models, ours include explicit uncertainty estimates, offering critical context for future lunar missions, geophysical studies, and predicting 15–36 km crust at Schrödinger and 29–52 km at Artemis III sites.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114506","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Analysis of conversions between compressional and shear waves is a workhorse method for constraining crustal and lithospheric structure on Earth; yet, such converted waves have not been unequivocally identified in seismic data from the largest events on the Moon, due to the highly scattered waveforms of shallow seismic events. We reanalyze the polarization attributes of waveforms recorded by the Apollo seismic network to identify signals with rectilinear particle motion below 1 Hz, arising from conversions across the crust-mantle boundary. Delay times of these converted waves are inverted to estimate crustal thickness and wavespeeds beneath the seismometers. Combined with gravimetric modeling, these new crustal thickness tie-points yield an updated lunar crustal model with an average thickness of 29–47 km. Unlike previous models, ours include explicit uncertainty estimates, offering critical context for future lunar missions, geophysical studies, and predicting 15–36 km crust at Schrödinger and 29–52 km at Artemis III sites.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.