{"title":"Observational Evidence for the Nonlinear Growth of Chorus Waves Caused by Substorm Injected Energetic Electrons","authors":"Rui Chen, Yoshizumi Miyoshi, Hong Zhao, Huayue Chen, Xueyi Wang, Yoshiya Kasahara, Shoya Matsuda, Tomoaki Hori, Fuminori Tsuchiya, Atsushi Kumamoto, Atsuki Shinbori, Satoshi Kasahara, Shoichiro Yokota, Kunihiro Keika, Takefumi Mitani, Takeshi Takashima, Ayako Matsuoka, Mariko Teramoto, Kazuhiro Yamamoto, Iku Shinohara","doi":"10.1029/2025JA033931","DOIUrl":null,"url":null,"abstract":"<p>Substorm energetic electron injections serve as a significant energy source for chorus wave generation, markedly altering the distribution of energetic electrons. Using the Arase satellite data, we present direct evidence for the nonlinear evolution of chorus waves following a substorm injection. The substorm injection causes the enhancement of energetic electron fluxes (∼20–200 keV) during which chorus waves appear as clear and intense rising-tone elements. Linear theoretical analysis shows that anisotropic energetic electrons provide free energy for the generation of seed chorus waves and the enhancement of energetic electrons increases the linear growth rate. Furthermore, nonlinear theoretical analysis shows that the increase in energetic electrons reduces the threshold amplitude, which is conducive to the chorus wave entering the nonlinear growth stage. These results indicate that nonlinear growth plays a significant role in the amplification and spectral evolution of chorus waves through a decrease in the threshold amplitudes.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033931","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Substorm energetic electron injections serve as a significant energy source for chorus wave generation, markedly altering the distribution of energetic electrons. Using the Arase satellite data, we present direct evidence for the nonlinear evolution of chorus waves following a substorm injection. The substorm injection causes the enhancement of energetic electron fluxes (∼20–200 keV) during which chorus waves appear as clear and intense rising-tone elements. Linear theoretical analysis shows that anisotropic energetic electrons provide free energy for the generation of seed chorus waves and the enhancement of energetic electrons increases the linear growth rate. Furthermore, nonlinear theoretical analysis shows that the increase in energetic electrons reduces the threshold amplitude, which is conducive to the chorus wave entering the nonlinear growth stage. These results indicate that nonlinear growth plays a significant role in the amplification and spectral evolution of chorus waves through a decrease in the threshold amplitudes.