Molecular Modeling Study for the Design of New FGFR4 Inhibitors Using 3D‑QSAR, Molecular Docking, Molecular Dynamic, ADMET Prediction, and Retrosynthesis

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Jun Li, Guangyi Luo, Qiuyu Xiong, Xinyi Chen, Zhengyang Zhao, Pengcheng Wen, Dr. Lu Zheng, Dr. Qingkun Wu
{"title":"Molecular Modeling Study for the Design of New FGFR4 Inhibitors Using 3D‑QSAR, Molecular Docking, Molecular Dynamic, ADMET Prediction, and Retrosynthesis","authors":"Jun Li,&nbsp;Guangyi Luo,&nbsp;Qiuyu Xiong,&nbsp;Xinyi Chen,&nbsp;Zhengyang Zhao,&nbsp;Pengcheng Wen,&nbsp;Dr. Lu Zheng,&nbsp;Dr. Qingkun Wu","doi":"10.1002/slct.202502220","DOIUrl":null,"url":null,"abstract":"<p>Fibroblast growth factor receptor 4 (FGFR4), a receptor tyrosine kinase, has emerged as a promising therapeutic target for liver cancer. In this study, we present a novel structure-based drug design approach combining computational techniques to develop quinazoline-based FGFR4 inhibitors. Our innovative strategy employed comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to establish highly predictive 3D-QSAR models (CoMFA: <i>q</i><sup>2</sup> = 0.552, <i>r</i><sup>2</sup> = 0.997; CoMSIA: <i>q</i><sup>2</sup> = 0.618, <i>r</i><sup>2</sup> = 0.960), revealing critical structure-activity relationships. Building on these insights, we designed a series of novel quinazoline derivatives featuring optimized pharmacophoric elements. Notably, our lead compound <b>N8</b> demonstrated: (1) superior binding stability in molecular docking studies, (2) enhanced predicted inhibitory activity, and (3) improved ADMET properties compared to existing inhibitors. Molecular dynamics simulations (100 ns) confirmed the remarkable stability of the N8-FGFR4 complex, validating our design strategy. Furthermore, a practical retrosynthetic pathway was developed for new compounds, addressing previous synthetic challenges and facilitating future development. This work not only develops a promising drug candidate but also establishes a robust framework for designing FGFR4-targeted therapies, ensuring a seamless progression of subsequent research endeavors.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 25","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202502220","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast growth factor receptor 4 (FGFR4), a receptor tyrosine kinase, has emerged as a promising therapeutic target for liver cancer. In this study, we present a novel structure-based drug design approach combining computational techniques to develop quinazoline-based FGFR4 inhibitors. Our innovative strategy employed comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to establish highly predictive 3D-QSAR models (CoMFA: q2 = 0.552, r2 = 0.997; CoMSIA: q2 = 0.618, r2 = 0.960), revealing critical structure-activity relationships. Building on these insights, we designed a series of novel quinazoline derivatives featuring optimized pharmacophoric elements. Notably, our lead compound N8 demonstrated: (1) superior binding stability in molecular docking studies, (2) enhanced predicted inhibitory activity, and (3) improved ADMET properties compared to existing inhibitors. Molecular dynamics simulations (100 ns) confirmed the remarkable stability of the N8-FGFR4 complex, validating our design strategy. Furthermore, a practical retrosynthetic pathway was developed for new compounds, addressing previous synthetic challenges and facilitating future development. This work not only develops a promising drug candidate but also establishes a robust framework for designing FGFR4-targeted therapies, ensuring a seamless progression of subsequent research endeavors.

Abstract Image

利用3D - QSAR、分子对接、分子动力学、ADMET预测和反合成技术设计新型FGFR4抑制剂的分子建模研究
成纤维细胞生长因子受体4 (FGFR4)是一种酪氨酸激酶受体,已成为肝癌治疗的一个有希望的靶点。在这项研究中,我们提出了一种新的基于结构的药物设计方法,结合计算技术来开发基于喹唑啉的FGFR4抑制剂。我们的创新策略采用比较分子场分析(CoMFA)和比较分子相似指数分析(CoMSIA)建立了高预测的3D-QSAR模型(CoMFA: q2 = 0.552, r2 = 0.997;CoMSIA: q2 = 0.618, r2 = 0.960),揭示了关键的构效关系。基于这些见解,我们设计了一系列具有优化药效元素的新型喹唑啉衍生物。值得注意的是,我们的先导化合物N8在分子对接研究中表现出:(1)优越的结合稳定性,(2)增强了预测的抑制活性,(3)与现有抑制剂相比,改善了ADMET特性。分子动力学模拟(100 ns)证实了N8-FGFR4复合物的显著稳定性,验证了我们的设计策略。此外,还开发了一种实用的新化合物的反合成途径,解决了以前的合成挑战并促进了未来的发展。这项工作不仅开发了一种有前景的候选药物,而且为设计fgfr4靶向疗法建立了一个强大的框架,确保了后续研究工作的无缝进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信