Zongxiao Zhang, Guo Yuan, Xakila Turgun, Zulpinur Turgun, Lijun Hou, Mao Ye, Yonghui Wang, Xingbin Xu
{"title":"Biogeographic Patterns and Ecological Roles of Microorganisms in Sediments Along an Estuarine Salinity Gradient","authors":"Zongxiao Zhang, Guo Yuan, Xakila Turgun, Zulpinur Turgun, Lijun Hou, Mao Ye, Yonghui Wang, Xingbin Xu","doi":"10.1111/1758-2229.70139","DOIUrl":null,"url":null,"abstract":"<p>The distribution patterns and driving mechanisms of microbial biogeographic patterns are fundamental questions in microbiology. This study analysed and compared the bacterial biogeographic patterns in the coastal environment, focusing on the Yangtze Estuary and its adjacent coastal zone. The purpose is to explore the driving mechanisms under spatial distribution, the community assembly processes and potential functions. Our results revealed that the sediment bacterial community structure exhibited a distinct geographical pattern and was significantly influenced by environmental factors. The microbial community displayed a non-random co-occurrence pattern, and the biogeographic patterns were shaped not only by environmental constraints (deterministic processes) but also by stochastic processes resulting from dispersal limitation. The metagenome sequencing analysis revealed a pronounced salinity gradient in the nitrogen-cycling function of the bacterial community. This functional difference appears to be driven by microbial diversity changes from the estuarine region to the ocean, highlighting the key role of microbial ecological characteristics. The findings of this study contribute to a deeper understanding of microbial ecology in estuarine environments, emphasizing the complex interplay between environmental factors and microbial community dynamics in shaping the function of estuarine sediment bacterial communities.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70139","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution patterns and driving mechanisms of microbial biogeographic patterns are fundamental questions in microbiology. This study analysed and compared the bacterial biogeographic patterns in the coastal environment, focusing on the Yangtze Estuary and its adjacent coastal zone. The purpose is to explore the driving mechanisms under spatial distribution, the community assembly processes and potential functions. Our results revealed that the sediment bacterial community structure exhibited a distinct geographical pattern and was significantly influenced by environmental factors. The microbial community displayed a non-random co-occurrence pattern, and the biogeographic patterns were shaped not only by environmental constraints (deterministic processes) but also by stochastic processes resulting from dispersal limitation. The metagenome sequencing analysis revealed a pronounced salinity gradient in the nitrogen-cycling function of the bacterial community. This functional difference appears to be driven by microbial diversity changes from the estuarine region to the ocean, highlighting the key role of microbial ecological characteristics. The findings of this study contribute to a deeper understanding of microbial ecology in estuarine environments, emphasizing the complex interplay between environmental factors and microbial community dynamics in shaping the function of estuarine sediment bacterial communities.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.