Andrew John Frels, Vidhya V. Nair, Brianna Kish, Kalen Riley, Gordon Mao, A. J. Schwichtenberg, Yunjie Tong
{"title":"Coupling of Low Frequency Hemodynamic Oscillations Between the Brain and Spinal Cord","authors":"Andrew John Frels, Vidhya V. Nair, Brianna Kish, Kalen Riley, Gordon Mao, A. J. Schwichtenberg, Yunjie Tong","doi":"10.1002/hbm.70278","DOIUrl":null,"url":null,"abstract":"<p>In Functional Magnetic Resonance Imaging (fMRI), the primary contrast is Blood Oxygen Level Dependent (BOLD) signal. Systemic Low Frequency Oscillations (sLFO) are BOLD signals between 0.01 and 0.1 Hz originating from systemic physiological processes. While sLFO signals in the brain have been shown to travel with blood in numerous studies, their behavior in the spinal cord (SC) remains unexplored. This study characterizes the coupling between brain-sLFO and SC-sLFO signals. Understanding brain-SC-coupling is pivotal for unraveling the vascular continuity of the central nervous system, which plays a crucial role in SC-injury pathophysiology. BOLD signal extraction involved registering structural masks to fMRI space to obtain average time series from the brain, SC, and superior sagittal sinus. The sLFOs of the time series were cross-correlated to determine vascular delays and analyzed for band power. It is found that the SC-sLFO signal comprises two components relative to the brain, showing opposite correlation polarity and varying delays. These findings suggest that highly oxygenated blood arrives at the spinal cord before arriving at the brain, and some component of the brain's venous output circulates to or near to the spinal cord later, likely due to unique arterial and venous pathways connecting the central nervous system. This insight offers a valuable imaging marker for future studies on the effects of SC injury on brain-SC interconnectivity.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70278","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70278","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In Functional Magnetic Resonance Imaging (fMRI), the primary contrast is Blood Oxygen Level Dependent (BOLD) signal. Systemic Low Frequency Oscillations (sLFO) are BOLD signals between 0.01 and 0.1 Hz originating from systemic physiological processes. While sLFO signals in the brain have been shown to travel with blood in numerous studies, their behavior in the spinal cord (SC) remains unexplored. This study characterizes the coupling between brain-sLFO and SC-sLFO signals. Understanding brain-SC-coupling is pivotal for unraveling the vascular continuity of the central nervous system, which plays a crucial role in SC-injury pathophysiology. BOLD signal extraction involved registering structural masks to fMRI space to obtain average time series from the brain, SC, and superior sagittal sinus. The sLFOs of the time series were cross-correlated to determine vascular delays and analyzed for band power. It is found that the SC-sLFO signal comprises two components relative to the brain, showing opposite correlation polarity and varying delays. These findings suggest that highly oxygenated blood arrives at the spinal cord before arriving at the brain, and some component of the brain's venous output circulates to or near to the spinal cord later, likely due to unique arterial and venous pathways connecting the central nervous system. This insight offers a valuable imaging marker for future studies on the effects of SC injury on brain-SC interconnectivity.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.