Jongchan An;Seung-Myeong Yu;Gwangmyeong An;Songi Cheon;Hyunsu Jang;Junyoung Song
{"title":"A 1.58 pJ/b 9 G bps Reference-Less Clock and Data Recovery Circuit With Sigma Range Detector","authors":"Jongchan An;Seung-Myeong Yu;Gwangmyeong An;Songi Cheon;Hyunsu Jang;Junyoung Song","doi":"10.1109/TCSII.2025.3577785","DOIUrl":null,"url":null,"abstract":"A 1.58 pJ/b 9 Gbps half-rate reference-less clock and data recovery (CDR) circuit with a sigma range detector (SRD) is presented. The SRD detects the standard deviation of the reference clock frequency error extracted from random data when the stochastic divider ratio is set to 256. The proposed SRD-based CDR mitigates the trade-off between the divider ratio induced by the randomness of the PRBS and the frequency error. This approach enhances the calculation speed of the frequency loop and improves the accuracy of the extracted frequency by eliminating additional compensation stages, resulting in reduced power consumption. The proposed CDR was fabricated in a 65-nm CMOS technology. The lock-time for PRBS11 is <inline-formula> <tex-math>$2.7~\\mu $ </tex-math></inline-formula>s, with a rms jitter of 1.1 ps and a peak-to-peak jitter of 16 ps. The active area of the design is 0.0636 mm2, with a power efficiency of 1.58 pJ/b.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 7","pages":"888-892"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11028894/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A 1.58 pJ/b 9 Gbps half-rate reference-less clock and data recovery (CDR) circuit with a sigma range detector (SRD) is presented. The SRD detects the standard deviation of the reference clock frequency error extracted from random data when the stochastic divider ratio is set to 256. The proposed SRD-based CDR mitigates the trade-off between the divider ratio induced by the randomness of the PRBS and the frequency error. This approach enhances the calculation speed of the frequency loop and improves the accuracy of the extracted frequency by eliminating additional compensation stages, resulting in reduced power consumption. The proposed CDR was fabricated in a 65-nm CMOS technology. The lock-time for PRBS11 is $2.7~\mu $ s, with a rms jitter of 1.1 ps and a peak-to-peak jitter of 16 ps. The active area of the design is 0.0636 mm2, with a power efficiency of 1.58 pJ/b.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.