IoT-Driven smart energy management with a closed PEMFC-PEMEC loop: A sustainable approach to decarbonizing flexible buildings in London

IF 5.4 Q2 ENERGY & FUELS
Araz Emami, Ata Chitsaz, Amirali Nouri
{"title":"IoT-Driven smart energy management with a closed PEMFC-PEMEC loop: A sustainable approach to decarbonizing flexible buildings in London","authors":"Araz Emami,&nbsp;Ata Chitsaz,&nbsp;Amirali Nouri","doi":"10.1016/j.segy.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><div>Buildings with energy-flexible technologies such as electric heating, smart DSM, and advanced PEMFC systems, offer innovative ways to reduce grid dependency during peak demand and enhance energy resilience. By aligning variable spot price tariffs with intelligent control strategies based on environmental conditions, occupancy, and energy pricing, these systems help lower peak loads and promote sustainable energy use. This study proposes an integrated, digitized energy flexible system combining demand-side management (DSM), smart controls, and a proton exchange membrane fuel cell (PEMFC) to enhance building energy performance under variable electricity pricing. Using TRNSYS simulations of a four-story UK building, the model incorporates machine learning and IoT data (occupancy, weather, and energy tariffs) to forecast energy demands and guide system operation. Sensitivity analyses and surface plots identified optimal operating points for electrolyzer temperature (around 70–75 °C) and ambient conditions (above 20 °C), which maximized hydrogen production and improved PEMEC efficiency (up to 84 %). The system maintained indoor temperatures between 17 and 21 °C and hot water and underfloor heating within 45 °C–55 °C, while reducing electricity usage during peak periods. These results highlight the potential of intelligent, flexible control strategies to achieve cost savings, thermal comfort, and improved energy resilience in smart buildings.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"19 ","pages":"Article 100191"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695522500019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Buildings with energy-flexible technologies such as electric heating, smart DSM, and advanced PEMFC systems, offer innovative ways to reduce grid dependency during peak demand and enhance energy resilience. By aligning variable spot price tariffs with intelligent control strategies based on environmental conditions, occupancy, and energy pricing, these systems help lower peak loads and promote sustainable energy use. This study proposes an integrated, digitized energy flexible system combining demand-side management (DSM), smart controls, and a proton exchange membrane fuel cell (PEMFC) to enhance building energy performance under variable electricity pricing. Using TRNSYS simulations of a four-story UK building, the model incorporates machine learning and IoT data (occupancy, weather, and energy tariffs) to forecast energy demands and guide system operation. Sensitivity analyses and surface plots identified optimal operating points for electrolyzer temperature (around 70–75 °C) and ambient conditions (above 20 °C), which maximized hydrogen production and improved PEMEC efficiency (up to 84 %). The system maintained indoor temperatures between 17 and 21 °C and hot water and underfloor heating within 45 °C–55 °C, while reducing electricity usage during peak periods. These results highlight the potential of intelligent, flexible control strategies to achieve cost savings, thermal comfort, and improved energy resilience in smart buildings.

Abstract Image

物联网驱动的智能能源管理与封闭的PEMFC-PEMEC循环:伦敦柔性建筑脱碳的可持续方法
采用电供暖、智能DSM和先进PEMFC系统等能源柔性技术的建筑,提供了创新的方法,可以在高峰需求期间减少对电网的依赖,并增强能源弹性。通过将可变的现货电价与基于环境条件、占用率和能源定价的智能控制策略相结合,这些系统有助于降低峰值负荷,促进可持续能源使用。本研究提出了一个集成的、数字化的能源柔性系统,结合了需求侧管理(DSM)、智能控制和质子交换膜燃料电池(PEMFC),以提高可变电价下的建筑能源性能。该模型利用TRNSYS对英国一栋四层建筑的模拟,结合了机器学习和物联网数据(入住率、天气和能源关税)来预测能源需求并指导系统运行。灵敏度分析和表面图确定了电解槽温度(约70-75°C)和环境条件(高于20°C)的最佳工作点,从而最大限度地提高了氢气产量并提高了PEMEC效率(高达84%)。该系统将室内温度保持在17至21°C之间,热水和地板采暖保持在45°C至55°C之间,同时减少高峰时段的用电量。这些结果突出了智能、灵活的控制策略在智能建筑中实现成本节约、热舒适和提高能源弹性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信