Modelling intermediate internal waves with currents and variable bottom

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Rossen Ivanov, Lyudmila Ivanova
{"title":"Modelling intermediate internal waves with currents and variable bottom","authors":"Rossen Ivanov,&nbsp;Lyudmila Ivanova","doi":"10.1016/j.nonrwa.2025.104451","DOIUrl":null,"url":null,"abstract":"<div><div>A model for internal interfacial waves between two layers of fluid in the presence of current and variable bottom is studied in the flat-surface approximation. Fluids are assumed to be incompressible and inviscid. Another assumption is that the upper layer is considerably deeper with a lower density than the lower layer. The fluid dynamics is presented in Hamiltonian form with appropriate Dirichlet–Neumann operators for the two fluid domains, and the depth-dependent current is taken into account. The well known integrable Intermediate Long Wave Equation (ILWE) is derived as an asymptotic internal waves model in the case of flat bottom. For a non-flat bottom the ILWE is with variable coefficients. Two limits of the ILWE lead to the integrable Benjamin–Ono and Korteweg-de Vries equations. Higher-order ILWE is obtained as well.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104451"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001373","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A model for internal interfacial waves between two layers of fluid in the presence of current and variable bottom is studied in the flat-surface approximation. Fluids are assumed to be incompressible and inviscid. Another assumption is that the upper layer is considerably deeper with a lower density than the lower layer. The fluid dynamics is presented in Hamiltonian form with appropriate Dirichlet–Neumann operators for the two fluid domains, and the depth-dependent current is taken into account. The well known integrable Intermediate Long Wave Equation (ILWE) is derived as an asymptotic internal waves model in the case of flat bottom. For a non-flat bottom the ILWE is with variable coefficients. Two limits of the ILWE lead to the integrable Benjamin–Ono and Korteweg-de Vries equations. Higher-order ILWE is obtained as well.
模拟具有电流和可变底的中间内波
在平面近似下,研究了有电流和变底存在时两层流体之间的内部界面波模型。流体被假定为不可压缩和无粘性的。另一个假设是,上层比下层深得多,密度也低得多。流体动力学以哈密顿形式表示,对两个流体域采用适当的狄利克雷-诺伊曼算子,并考虑了与深度相关的电流。在平底情况下,导出了众所周知的可积中间长波方程(ILWE)作为渐近内波模型。对于非平坦的底部,ILWE具有可变系数。ILWE的两个极限导致了Benjamin-Ono和Korteweg-de Vries方程的可积。得到了高阶ILWE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信