A hybrid power load forecasting model based on evolutionary strategy and long short term memory

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS
Wang Yingnan , Wang Xiaowei
{"title":"A hybrid power load forecasting model based on evolutionary strategy and long short term memory","authors":"Wang Yingnan ,&nbsp;Wang Xiaowei","doi":"10.1016/j.egyr.2025.05.041","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate short-term load forecasting (STLF) is crucial for maintaining supply-demand balance and ensuring stable power grid operations. This paper proposes a hybrid model, the Evolutionary Strategy Long Short-Term Memory (ES-LSTM), to enhance the accuracy of STLF. The model combines genetic algorithm (GA) optimization with LSTM neural networks, tackling significant challenges related to data quality and hyperparameter tuning. Missing load and meteorological data are restored using Newton interpolation, and principal component analysis (PCA) is employed to reduce feature redundancy. GA optimizes key LSTM hyperparameters, such as the number of hidden layer units, time steps, and learning rate, to maximize prediction performance. Validated on a data set of 475 low-voltage users, ES-LSTM achieves a mean absolute percentage error (MAPE) of 0.02, significantly outperforming benchmark models like LSSVM (MAPE: 0.036) and BPNN (MAPE: 0.115). Experimental results confirm the model’s robustness, generalization ability, and suitability for real-world applications. This research provides a reliable solution for power utilities to improve operational efficiency and grid stability.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 845-853"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725003221","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate short-term load forecasting (STLF) is crucial for maintaining supply-demand balance and ensuring stable power grid operations. This paper proposes a hybrid model, the Evolutionary Strategy Long Short-Term Memory (ES-LSTM), to enhance the accuracy of STLF. The model combines genetic algorithm (GA) optimization with LSTM neural networks, tackling significant challenges related to data quality and hyperparameter tuning. Missing load and meteorological data are restored using Newton interpolation, and principal component analysis (PCA) is employed to reduce feature redundancy. GA optimizes key LSTM hyperparameters, such as the number of hidden layer units, time steps, and learning rate, to maximize prediction performance. Validated on a data set of 475 low-voltage users, ES-LSTM achieves a mean absolute percentage error (MAPE) of 0.02, significantly outperforming benchmark models like LSSVM (MAPE: 0.036) and BPNN (MAPE: 0.115). Experimental results confirm the model’s robustness, generalization ability, and suitability for real-world applications. This research provides a reliable solution for power utilities to improve operational efficiency and grid stability.
基于进化策略和长短期记忆的混合电力负荷预测模型
准确的短期负荷预测对于维持电力供需平衡、保证电网稳定运行至关重要。本文提出了一种混合模型——进化策略长短期记忆(ES-LSTM),以提高长短期记忆的准确性。该模型将遗传算法(GA)优化与LSTM神经网络相结合,解决了与数据质量和超参数调优相关的重大挑战。利用牛顿插值法对缺失的负荷和气象数据进行恢复,并利用主成分分析(PCA)减少特征冗余。GA优化LSTM的关键超参数,如隐藏层单元数、时间步长和学习率,以最大限度地提高预测性能。在475个低压用户的数据集上进行验证,ES-LSTM的平均绝对百分比误差(MAPE)为0.02,显著优于LSSVM (MAPE: 0.036)和BPNN (MAPE: 0.115)等基准模型。实验结果证实了该模型的鲁棒性、泛化能力以及对实际应用的适用性。该研究为电力公司提高运行效率和电网稳定性提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信