A three-dimensional dynamic wake prediction framework for multiple turbine operating states based on diffusion model

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS
Mengyang Song , Jiancai Huang , Xuqiang Shao , Shiao Zhao , Chenyu Ma , Zaishan Qi
{"title":"A three-dimensional dynamic wake prediction framework for multiple turbine operating states based on diffusion model","authors":"Mengyang Song ,&nbsp;Jiancai Huang ,&nbsp;Xuqiang Shao ,&nbsp;Shiao Zhao ,&nbsp;Chenyu Ma ,&nbsp;Zaishan Qi","doi":"10.1016/j.energy.2025.137084","DOIUrl":null,"url":null,"abstract":"<div><div>The modeling of wind turbine wakes is critical for turbine control, layout optimization, and power prediction, yet achieving both high accuracy and efficient computation remains a challenge. This study proposes a machine learning (ML)-based three-dimensional dynamic wake prediction framework consisting of a freestream field generator, a diffusion model, and an analytical wake model. The framework employs an iteration-independent prediction method to reconstruct wake fields directly from inflow data and turbine states, making prediction errors independent of the time-marching prediction iterations. The framework seamlessly integrates a diffusion model for enhanced prediction of transient wake characteristics, and an analytical model ensuring adaptability to various turbine operating strategies. The performance of the proposed framework was evaluated under various turbine operating strategies, including greedy, wake-steering, and partially-operating. With an 8476<span><math><mo>×</mo></math></span> speedup over Large Eddy Simulation (LES), the framework delivers high-accuracy predictions, showing 3.9% transient and 0.7% time-averaged errors relative to the average freestream velocity. Additionally, the rotor-effective speed derived from the predicted wake fields aligns closely with simulation-derived results, confirming the framework’s accuracy. To the best of our knowledge, this work presents the first ML-based framework capable of 3-D dynamic wake prediction, offering an accurate and efficient solution for wind turbine wake modeling.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"333 ","pages":"Article 137084"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225027264","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The modeling of wind turbine wakes is critical for turbine control, layout optimization, and power prediction, yet achieving both high accuracy and efficient computation remains a challenge. This study proposes a machine learning (ML)-based three-dimensional dynamic wake prediction framework consisting of a freestream field generator, a diffusion model, and an analytical wake model. The framework employs an iteration-independent prediction method to reconstruct wake fields directly from inflow data and turbine states, making prediction errors independent of the time-marching prediction iterations. The framework seamlessly integrates a diffusion model for enhanced prediction of transient wake characteristics, and an analytical model ensuring adaptability to various turbine operating strategies. The performance of the proposed framework was evaluated under various turbine operating strategies, including greedy, wake-steering, and partially-operating. With an 8476× speedup over Large Eddy Simulation (LES), the framework delivers high-accuracy predictions, showing 3.9% transient and 0.7% time-averaged errors relative to the average freestream velocity. Additionally, the rotor-effective speed derived from the predicted wake fields aligns closely with simulation-derived results, confirming the framework’s accuracy. To the best of our knowledge, this work presents the first ML-based framework capable of 3-D dynamic wake prediction, offering an accurate and efficient solution for wind turbine wake modeling.
基于扩散模型的涡轮多工况三维动态尾迹预测框架
风力机尾迹建模对于风力机控制、布局优化和功率预测至关重要,但如何实现高精度和高效率的计算仍然是一个挑战。本研究提出了一个基于机器学习的三维动态尾流预测框架,该框架由一个自由流场发生器、一个扩散模型和一个尾流分析模型组成。该框架采用与迭代无关的预测方法,直接从入流数据和涡轮状态重建尾流场,使预测误差与时间推进预测迭代无关。该框架无缝集成了一个扩散模型,用于增强瞬态尾迹特性的预测,以及一个分析模型,确保对各种涡轮机运行策略的适应性。在贪婪、尾迹转向和部分运行等不同的涡轮运行策略下,对该框架的性能进行了评估。与大涡模拟(LES)相比,该框架的加速速度提高了8476倍,提供了高精度的预测,相对于平均自由流速度,该框架显示出3.9%的瞬态误差和0.7%的时间平均误差。此外,根据预测的尾流场得出的转子有效速度与模拟得出的结果非常吻合,证实了框架的准确性。据我们所知,这项工作提出了第一个能够进行三维动态尾流预测的基于ml的框架,为风力涡轮机尾流建模提供了一个准确有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信