A polynomial time algorithm for Sylvester waves when entries are bounded

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Guoce Xin , Chen Zhang
{"title":"A polynomial time algorithm for Sylvester waves when entries are bounded","authors":"Guoce Xin ,&nbsp;Chen Zhang","doi":"10.1016/j.aam.2025.102931","DOIUrl":null,"url":null,"abstract":"<div><div>Sylvester's denumerant <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> is a quantity that counts the number of nonnegative integer solutions to the equation <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>t</mi></math></span>, where <span><math><mi>a</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is a sequence of positive integers with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We present a polynomial time algorithm in <em>N</em> for computing <span><math><mi>d</mi><mo>(</mo><mi>t</mi><mo>;</mo><mi>a</mi><mo>)</mo></math></span> when <strong><em>a</em></strong> is bounded and <em>t</em> is a parameter. The proposed algorithm is rooted in the use of cyclotomic polynomials and builds upon recent results by Xin-Zhang-Zhang on the efficient computation of generalized Todd polynomials. The algorithm has been implemented in <span>Maple</span> under the name <span>Cyc-Denum</span> and demonstrates superior performance when <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>500</mn></math></span> compared to Sills-Zeilberger's <span>Maple</span> package <span>PARTITIONS</span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102931"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000934","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Sylvester's denumerant d(t;a) is a quantity that counts the number of nonnegative integer solutions to the equation i=1Naixi=t, where a=(a1,a2,,aN) is a sequence of positive integers with gcd(a)=1. We present a polynomial time algorithm in N for computing d(t;a) when a is bounded and t is a parameter. The proposed algorithm is rooted in the use of cyclotomic polynomials and builds upon recent results by Xin-Zhang-Zhang on the efficient computation of generalized Todd polynomials. The algorithm has been implemented in Maple under the name Cyc-Denum and demonstrates superior performance when ai500 compared to Sills-Zeilberger's Maple package PARTITIONS.
项有界时Sylvester波的多项式时间算法
Sylvester的常数d(t;a)是计算方程∑i=1Naixi=t的非负整数解的个数,其中a=(a1,a2,…,aN)是一个正整数序列,gcd (a)=1。当a有界且t为参数时,我们给出了在N上计算d(t;a)的多项式时间算法。所提出的算法是基于使用环形多项式,并建立在最近的结果,由xinzhang - zhang对有效计算广义托德多项式。该算法已经在Maple中以Cyc-Denum的名义实现,当ai≤500时,与sils - zeilberger的Maple包分区相比,它表现出了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信