Numerical solutions for (2+1)-dimensional ZK-MEW equation using linear barycentric rational collocation method

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zongcheng Li , Jin Li
{"title":"Numerical solutions for (2+1)-dimensional ZK-MEW equation using linear barycentric rational collocation method","authors":"Zongcheng Li ,&nbsp;Jin Li","doi":"10.1016/j.camwa.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical solutions for Zakharov-Kuznetsov modified equal width (ZK-MEW) equation are investigated according to linear barycentric rational collocation method (LBRCM). Firstly, by using the Newton linearization method, the nonlinear part is linearized. Then, with help of LBRCM and differentiation matrices, the expression of matrix form for the discrete linear ZK-MEW equation is obtained, which can be easily solved by Matlab. Subsequently, with the aid of barycentric interpolation estimate, convergence rate for numerical solution is shown. Finally, through illustrating two numerical examples, the validity of the theoretical results is verified.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"193 ","pages":"Pages 332-345"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002664","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical solutions for Zakharov-Kuznetsov modified equal width (ZK-MEW) equation are investigated according to linear barycentric rational collocation method (LBRCM). Firstly, by using the Newton linearization method, the nonlinear part is linearized. Then, with help of LBRCM and differentiation matrices, the expression of matrix form for the discrete linear ZK-MEW equation is obtained, which can be easily solved by Matlab. Subsequently, with the aid of barycentric interpolation estimate, convergence rate for numerical solution is shown. Finally, through illustrating two numerical examples, the validity of the theoretical results is verified.
线性重心有理配点法求解(2+1)维ZK-MEW方程
利用线性质心有理配点法研究了Zakharov-Kuznetsov修正等宽方程(ZK-MEW)的数值解。首先,采用牛顿线性化方法对非线性部分进行线性化处理。然后,借助LBRCM和微分矩阵,得到离散线性ZK-MEW方程的矩阵形式表达式,该表达式易于Matlab求解。然后,借助重心插值估计,给出了数值解的收敛速度。最后,通过两个数值算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信