Ultrafast piezocatalytic organic pollutant degradation enabled by dynamic spin state regulation of cobalt in nano-ferroelectrics

Yu Mo , Jiyue Wu , Wei Liu , Yizheng Bao , Zimeng Hu , Nan Meng , Haitao Huang , Genshui Wang
{"title":"Ultrafast piezocatalytic organic pollutant degradation enabled by dynamic spin state regulation of cobalt in nano-ferroelectrics","authors":"Yu Mo ,&nbsp;Jiyue Wu ,&nbsp;Wei Liu ,&nbsp;Yizheng Bao ,&nbsp;Zimeng Hu ,&nbsp;Nan Meng ,&nbsp;Haitao Huang ,&nbsp;Genshui Wang","doi":"10.1016/j.apmate.2025.100307","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectric materials are gaining increasing attention for the development of advanced catalytic technologies due to their field-responsive polarization states. However, achieving dynamic optimization of catalytic activity using ferroelectrics remains a fundamental challenge. Inspired by the force-adaptive mechanisms of fish scales, we introduce an intracrystalline force regulation strategy to dynamically control cobalt spin states and enhance peroxymonosulfate (PMS) activation in Fenton-like processes. This approach utilizes BaTi<sub>0.92</sub>Co<sub>0.08</sub>O<sub>3-<em>δ</em></sub> (BTC-8) nano-ferroelectrics, where ultrasound irradiation generates a built-in electric field that drives electrons towards cobalt sites. This electron transfer is further facilitated by electronegativity differences between cobalt and barium/titanium ions. The resulting piezo-driven electron flow promotes continuous regeneration of high-spin Co<sup>2+</sup>, enhancing PMS adsorption and SO<sub>4</sub>-OH bond cleavage, leading to increased production of ·SO<sub>4</sub><sup>−</sup> and singlet oxygen (<sup>1</sup>O<sub>2</sub>) for organic pollutant degradation. Consequently, BTC-8 achieves a reaction rate (<em>k</em>=1.7960 min<sup>−1</sup>) 28.93 times higher than that of pure barium titanate, surpassing previously reported PMS activation and piezocatalytic systems. This work represents a shift from static electronic structure design to dynamic electronic engineering in the development of advanced catalytic strategies for water remediation.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 4","pages":"Article 100307"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric materials are gaining increasing attention for the development of advanced catalytic technologies due to their field-responsive polarization states. However, achieving dynamic optimization of catalytic activity using ferroelectrics remains a fundamental challenge. Inspired by the force-adaptive mechanisms of fish scales, we introduce an intracrystalline force regulation strategy to dynamically control cobalt spin states and enhance peroxymonosulfate (PMS) activation in Fenton-like processes. This approach utilizes BaTi0.92Co0.08O3-δ (BTC-8) nano-ferroelectrics, where ultrasound irradiation generates a built-in electric field that drives electrons towards cobalt sites. This electron transfer is further facilitated by electronegativity differences between cobalt and barium/titanium ions. The resulting piezo-driven electron flow promotes continuous regeneration of high-spin Co2+, enhancing PMS adsorption and SO4-OH bond cleavage, leading to increased production of ·SO4 and singlet oxygen (1O2) for organic pollutant degradation. Consequently, BTC-8 achieves a reaction rate (k=1.7960 min−1) 28.93 times higher than that of pure barium titanate, surpassing previously reported PMS activation and piezocatalytic systems. This work represents a shift from static electronic structure design to dynamic electronic engineering in the development of advanced catalytic strategies for water remediation.

Abstract Image

纳米铁电体中钴的动态自旋态调控使超快压电催化有机污染物降解成为可能
铁电材料由于具有场响应极化态,在先进催化技术的发展中受到越来越多的关注。然而,利用铁电体实现催化活性的动态优化仍然是一个根本性的挑战。受鱼鳞的力适应机制的启发,我们引入了一种晶体内力调节策略来动态控制钴的自旋状态,并增强芬顿样过程中过氧单硫酸盐(PMS)的激活。该方法利用bati0.92 co0.080 o3 -δ (BTC-8)纳米铁电体,其中超声照射产生内置电场,将电子驱动到钴位点。钴和钡/钛离子之间的电负性差异进一步促进了这种电子转移。由此产生的压电驱动电子流促进了高自旋Co2+的连续再生,增强了PMS吸附和SO4- oh键的裂解,从而增加了用于有机污染物降解的·SO4−和单线态氧(1O2)的产量。因此,BTC-8的反应速率(k=1.7960 min−1)比纯钛酸钡高28.93倍,超过了先前报道的PMS活化和压电催化体系。这项工作代表了从静态电子结构设计到动态电子工程在发展先进的水修复催化策略的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信