Emerging sinusoidal structures for energy absorption: Mechanisms, optimizations and applications

IF 14.2 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jianfei Zhou , Meng Zou , Bing Feng Ng , Mingxiong Ou
{"title":"Emerging sinusoidal structures for energy absorption: Mechanisms, optimizations and applications","authors":"Jianfei Zhou ,&nbsp;Meng Zou ,&nbsp;Bing Feng Ng ,&nbsp;Mingxiong Ou","doi":"10.1016/j.compositesb.2025.112759","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight structures with superior energy absorption characteristics play an important role in engineering applications. In recent years, the introduction of sinusoidal patterns has emerged as an effective design solution. These patterns enable tailored stress distribution, optimized load transfer and controlled deformation modes. Such designs significantly enhance the energy absorption efficiency of structural materials. In this paper, we review recent advances in representative sinusoidal structures for energy absorption. The work focuses on development over the past decade. Specifically, structural designs, functional mechanisms, deformation theories, finite element methods and experimental studies with different sinusoidal configurations are reviewed. The structures include tube sections and walls, transversal, longitudinal and bi-directional corrugated panels, honeycomb structures and other specialized forms. Material implementations range from conventional metals and polymers to advanced fiber-reinforced composites. In addition, manufacturing and optimization approaches to sinusoidal structures are discussed, alongside future challenges and prospects. This paper provides reference and inspiration for the design sinusoidal patterns, which holds great potential to the development of energy absorption structures.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"306 ","pages":"Article 112759"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825006651","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight structures with superior energy absorption characteristics play an important role in engineering applications. In recent years, the introduction of sinusoidal patterns has emerged as an effective design solution. These patterns enable tailored stress distribution, optimized load transfer and controlled deformation modes. Such designs significantly enhance the energy absorption efficiency of structural materials. In this paper, we review recent advances in representative sinusoidal structures for energy absorption. The work focuses on development over the past decade. Specifically, structural designs, functional mechanisms, deformation theories, finite element methods and experimental studies with different sinusoidal configurations are reviewed. The structures include tube sections and walls, transversal, longitudinal and bi-directional corrugated panels, honeycomb structures and other specialized forms. Material implementations range from conventional metals and polymers to advanced fiber-reinforced composites. In addition, manufacturing and optimization approaches to sinusoidal structures are discussed, alongside future challenges and prospects. This paper provides reference and inspiration for the design sinusoidal patterns, which holds great potential to the development of energy absorption structures.
新兴的能量吸收正弦结构:机制、优化和应用
轻质结构具有良好的吸能特性,在工程应用中发挥着重要作用。近年来,正弦模式的引入已成为一种有效的设计解决方案。这些模式可以定制应力分布,优化负载传递和控制变形模式。这样的设计大大提高了结构材料的吸能效率。本文综述了具有代表性的能量吸收正弦结构的最新研究进展。工作重点是过去十年的发展。具体而言,结构设计,功能机制,变形理论,有限元方法和实验研究不同的正弦配置进行了回顾。结构包括管段和管壁、横向、纵向和双向波纹板、蜂窝结构和其他特殊形式。材料实施范围从传统的金属和聚合物到先进的纤维增强复合材料。此外,讨论了正弦结构的制造和优化方法,以及未来的挑战和前景。本文为正弦模式的设计提供了参考和启示,对吸能结构的发展具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信