{"title":"Paired-domination in binary trees","authors":"Aaron D. Gray , Michael A. Henning","doi":"10.1016/j.dam.2025.06.038","DOIUrl":null,"url":null,"abstract":"<div><div>A set <span><math><mi>S</mi></math></span> of vertices in an isolate-free graph <span><math><mi>G</mi></math></span> is a paired-dominating set if every vertex of <span><math><mi>G</mi></math></span> is adjacent to some other vertex in <span><math><mi>S</mi></math></span> and the subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>S</mi><mo>]</mo></mrow></mrow></math></span> induced by the set <span><math><mi>S</mi></math></span> contains a perfect matching. The paired-domination number <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>pr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the minimum cardinality of a paired-dominating set in <span><math><mi>G</mi></math></span>. A binary tree is a tree in which every vertex has degree 1 or degree 3. We determine a tight upper bound on the paired-domination number of a binary tree and show that if <span><math><mi>T</mi></math></span> is a binary tree of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>pr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. Thereafter we continue the study of a version of the paired-domination game recently introduced by the authors (Gray and Henning, 2023) that embraces both the domination and matching flavor of the game. We give an explicit formula for the game paired-domination number of an infinite family of binary trees and show that if <span><math><mi>T</mi></math></span> is a binary caterpillar of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>Φ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> takes on one of the values in the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></math></span>. We show that if <span><math><mi>T</mi></math></span> is a complete binary tree of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo><</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>192</mn></mrow></mfrac><mo>)</mo></mrow><mi>n</mi></mrow></math></span>. We conclude with a conjecture that <span><math><mrow><mo>sup</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span> where the supremum is over all binary trees <span><math><mi>T</mi></math></span> of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 306-317"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A set of vertices in an isolate-free graph is a paired-dominating set if every vertex of is adjacent to some other vertex in and the subgraph induced by the set contains a perfect matching. The paired-domination number of is the minimum cardinality of a paired-dominating set in . A binary tree is a tree in which every vertex has degree 1 or degree 3. We determine a tight upper bound on the paired-domination number of a binary tree and show that if is a binary tree of order , then . Thereafter we continue the study of a version of the paired-domination game recently introduced by the authors (Gray and Henning, 2023) that embraces both the domination and matching flavor of the game. We give an explicit formula for the game paired-domination number of an infinite family of binary trees and show that if is a binary caterpillar of order , then , where takes on one of the values in the set . We show that if is a complete binary tree of order , then . We conclude with a conjecture that where the supremum is over all binary trees of order .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.