Paired-domination in binary trees

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Aaron D. Gray , Michael A. Henning
{"title":"Paired-domination in binary trees","authors":"Aaron D. Gray ,&nbsp;Michael A. Henning","doi":"10.1016/j.dam.2025.06.038","DOIUrl":null,"url":null,"abstract":"<div><div>A set <span><math><mi>S</mi></math></span> of vertices in an isolate-free graph <span><math><mi>G</mi></math></span> is a paired-dominating set if every vertex of <span><math><mi>G</mi></math></span> is adjacent to some other vertex in <span><math><mi>S</mi></math></span> and the subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>S</mi><mo>]</mo></mrow></mrow></math></span> induced by the set <span><math><mi>S</mi></math></span> contains a perfect matching. The paired-domination number <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>pr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the minimum cardinality of a paired-dominating set in <span><math><mi>G</mi></math></span>. A binary tree is a tree in which every vertex has degree 1 or degree 3. We determine a tight upper bound on the paired-domination number of a binary tree and show that if <span><math><mi>T</mi></math></span> is a binary tree of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>pr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. Thereafter we continue the study of a version of the paired-domination game recently introduced by the authors (Gray and Henning, 2023) that embraces both the domination and matching flavor of the game. We give an explicit formula for the game paired-domination number of an infinite family of binary trees and show that if <span><math><mi>T</mi></math></span> is a binary caterpillar of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>Φ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> takes on one of the values in the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></math></span>. We show that if <span><math><mi>T</mi></math></span> is a complete binary tree of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&lt;</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>192</mn></mrow></mfrac><mo>)</mo></mrow><mi>n</mi></mrow></math></span>. We conclude with a conjecture that <span><math><mrow><mo>sup</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gpr</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span> where the supremum is over all binary trees <span><math><mi>T</mi></math></span> of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 306-317"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A set S of vertices in an isolate-free graph G is a paired-dominating set if every vertex of G is adjacent to some other vertex in S and the subgraph G[S] induced by the set S contains a perfect matching. The paired-domination number γpr(G) of G is the minimum cardinality of a paired-dominating set in G. A binary tree is a tree in which every vertex has degree 1 or degree 3. We determine a tight upper bound on the paired-domination number of a binary tree and show that if T is a binary tree of order n4, then γpr(T)23(n1). Thereafter we continue the study of a version of the paired-domination game recently introduced by the authors (Gray and Henning, 2023) that embraces both the domination and matching flavor of the game. We give an explicit formula for the game paired-domination number of an infinite family of binary trees and show that if T is a binary caterpillar of order n, then γgpr(T)=34nΦ(n), where Φ(n) takes on one of the values in the set {1,32,2,52}. We show that if T is a complete binary tree of order n, then γgpr(T)<(23+1192)n. We conclude with a conjecture that supγgpr(T)n=34 where the supremum is over all binary trees T of order n4.
二叉树中的配对支配
如果无隔离图G的每个顶点与S中的其他顶点相邻,且由该集合S导出的子图G[S]包含完美匹配,则该无隔离图G中的顶点集S是成对支配集。G的配对支配数γpr(G)是G中配对支配集的最小基数。二叉树是每个顶点都有1度或3度的树。我们确定了二叉树成对支配数的紧上界,并证明了如果T是n≥4阶的二叉树,则γpr(T)≤23(n−1)。此后,我们继续研究作者(Gray和Henning, 2023)最近介绍的配对统治游戏版本,该版本包含了游戏的统治和匹配风格。我们给出了无限二叉树族的对策配对支配数的显式公式,并证明了如果T是n阶的二叉树,则γgpr(T)=34n−Φ(n),其中Φ(n)取集合{1,32,2,52}中的一个值。我们证明了如果T是n阶的完全二叉树,则γgpr(T)<(23+1192)n。我们得到了supγgpr(T)n=34的一个猜想,其中在所有n≥4阶的二叉树T上存在最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信