Milad Esmaeilbeigi , Richard P. Duncan , Simon Clulow , Tariq Ezaz , Ben J. Kefford
{"title":"Multigenerational effects of metals accumulate over three generations in the amphibian-killing fungus (Batrachochytrium dendrobatidis)","authors":"Milad Esmaeilbeigi , Richard P. Duncan , Simon Clulow , Tariq Ezaz , Ben J. Kefford","doi":"10.1016/j.aquatox.2025.107476","DOIUrl":null,"url":null,"abstract":"<div><div>Exposure experiments within a single generation assess organisms’ sensitivity to pollutants but don't reveal long-term effects over multiple generations. We studied the multigenerational effects (MGEs) of copper (Cu), zinc (Zn), and their combination (Cu+Zn) on the amphibian-killing fungus <em>Batrachochytrium dendrobatidis</em> (Bd) over three generations. Our goal was to determine if Bd’s sensitivity to metals changes with continuous exposure, which should affect its long-term performance at metal-polluted sites. We conducted two experiments: (1) exposing three generations (F0-F2) of Bd to fixed, environmentally relevant metal concentrations, and (2) assessing how first-generation (F0) exposure influenced Bd’s response to varying metal concentrations in F1, including no exposure to metals. Experiment 2 allowed us to estimate transgenerational plasticity (TGP), the extent to which F0 exposure influenced offspring performance without metals. We measured Bd’s population growth rate, and the numbers of live zoospores, sporangia, and colonies. Continuous exposure to Cu and Zn led to a progressive decline in Bd performance over three generations, indicating accumulating negative effects. TGP was evident, with F0 metal exposure causing a decline in F1 performance without metals. TGP explained 20–80 % of the decline in population growth rate across generations with continuous metal exposure. Our findings suggest that continuous exposure to elevated Cu and Zn levels negatively impacts Bd, indicating that metal-polluted sites could serve as disease refugia for Bd-susceptible amphibians.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"286 ","pages":"Article 107476"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25002401","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure experiments within a single generation assess organisms’ sensitivity to pollutants but don't reveal long-term effects over multiple generations. We studied the multigenerational effects (MGEs) of copper (Cu), zinc (Zn), and their combination (Cu+Zn) on the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) over three generations. Our goal was to determine if Bd’s sensitivity to metals changes with continuous exposure, which should affect its long-term performance at metal-polluted sites. We conducted two experiments: (1) exposing three generations (F0-F2) of Bd to fixed, environmentally relevant metal concentrations, and (2) assessing how first-generation (F0) exposure influenced Bd’s response to varying metal concentrations in F1, including no exposure to metals. Experiment 2 allowed us to estimate transgenerational plasticity (TGP), the extent to which F0 exposure influenced offspring performance without metals. We measured Bd’s population growth rate, and the numbers of live zoospores, sporangia, and colonies. Continuous exposure to Cu and Zn led to a progressive decline in Bd performance over three generations, indicating accumulating negative effects. TGP was evident, with F0 metal exposure causing a decline in F1 performance without metals. TGP explained 20–80 % of the decline in population growth rate across generations with continuous metal exposure. Our findings suggest that continuous exposure to elevated Cu and Zn levels negatively impacts Bd, indicating that metal-polluted sites could serve as disease refugia for Bd-susceptible amphibians.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.