Investigation of the optical and electronic properties of double perovskite Li2CuBiX6 (X = Br, I) for photovoltaic applications using first-principles and machine learning approaches

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Taoufik Chargui , Ramzi El Idrissi , Abdelkabir Bacha , Fatima Lmai
{"title":"Investigation of the optical and electronic properties of double perovskite Li2CuBiX6 (X = Br, I) for photovoltaic applications using first-principles and machine learning approaches","authors":"Taoufik Chargui ,&nbsp;Ramzi El Idrissi ,&nbsp;Abdelkabir Bacha ,&nbsp;Fatima Lmai","doi":"10.1016/j.solener.2025.113737","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient and stable lead-free materials is essential for advancing next-generation photovoltaic technologies. In this study, we investigate Li<sub>2</sub>CuBiX<sub>6</sub> (X = Br, I) double perovskites as promising absorber materials, using first-principles calculations and machine learning techniques. Density functional theory (DFT) results show indirect band gaps of 1.7 eV (Br) and 1.3 eV (I), suitable for solar energy conversion. Key optical properties, including absorption coefficient, reflectivity, refractive index and dielectric function, confirm their strong ability to capture light. A solar cell architecture FTO/ETL/Li<sub>2</sub>CuBiX<sub>6</sub>/HTL/Mo was modeled in SCAPS-1D, evaluating various electron and hole transport layers. SnS<sub>2</sub> and Cu<sub>2</sub>O were identified as the best ETL and HTL, respectively, producing high energy conversion efficiencies of 27.24 % (Li<sub>2</sub>CuBiBr<sub>6</sub>) and 31.80 % (Li<sub>2</sub>CuBiI<sub>6</sub>). We also analyzed the effects of interfacial defects, doping concentration, absorber thickness and temperature on device performance. To predict efficiency trends and optimize configurations, we applied machine learning models (XGBoost, Random Forest, SVR). XGBoost achieved the highest accuracy, with R<sup>2</sup> = 99.87 % and a low RMSE. This work highlights the potential of Li<sub>2</sub>CuBiX<sub>6</sub> as an efficient, lead-free solar absorber and demonstrates the value of combining first-principles simulations with machine learning for photovoltaic design.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113737"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005006","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and stable lead-free materials is essential for advancing next-generation photovoltaic technologies. In this study, we investigate Li2CuBiX6 (X = Br, I) double perovskites as promising absorber materials, using first-principles calculations and machine learning techniques. Density functional theory (DFT) results show indirect band gaps of 1.7 eV (Br) and 1.3 eV (I), suitable for solar energy conversion. Key optical properties, including absorption coefficient, reflectivity, refractive index and dielectric function, confirm their strong ability to capture light. A solar cell architecture FTO/ETL/Li2CuBiX6/HTL/Mo was modeled in SCAPS-1D, evaluating various electron and hole transport layers. SnS2 and Cu2O were identified as the best ETL and HTL, respectively, producing high energy conversion efficiencies of 27.24 % (Li2CuBiBr6) and 31.80 % (Li2CuBiI6). We also analyzed the effects of interfacial defects, doping concentration, absorber thickness and temperature on device performance. To predict efficiency trends and optimize configurations, we applied machine learning models (XGBoost, Random Forest, SVR). XGBoost achieved the highest accuracy, with R2 = 99.87 % and a low RMSE. This work highlights the potential of Li2CuBiX6 as an efficient, lead-free solar absorber and demonstrates the value of combining first-principles simulations with machine learning for photovoltaic design.
利用第一性原理和机器学习方法研究光伏应用中双钙钛矿Li2CuBiX6 (X = Br, I)的光学和电子性质
开发高效、稳定的无铅材料对于推进下一代光伏技术至关重要。在这项研究中,我们利用第一性原理计算和机器学习技术研究了Li2CuBiX6 (X = Br, I)双钙钛矿作为有前途的吸收材料。密度泛函理论(DFT)结果表明,间接带隙为1.7 eV (Br)和1.3 eV (I),适合太阳能转换。关键的光学特性,包括吸收系数、反射率、折射率和介电函数,证实了它们具有很强的光捕获能力。在SCAPS-1D中对太阳能电池结构FTO/ETL/Li2CuBiX6/HTL/Mo进行了建模,评估了不同的电子和空穴传输层。结果表明,SnS2和Cu2O分别为最佳ETL和HTL,其能量转换效率分别为27.24% (Li2CuBiBr6)和31.80% (Li2CuBiI6)。分析了界面缺陷、掺杂浓度、吸收剂厚度和温度对器件性能的影响。为了预测效率趋势和优化配置,我们应用了机器学习模型(XGBoost、Random Forest、SVR)。XGBoost达到了最高的准确度,R2 = 99.87%, RMSE较低。这项工作突出了Li2CuBiX6作为高效、无铅太阳能吸收剂的潜力,并展示了将第一性原理模拟与机器学习相结合用于光伏设计的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信