Listing maximal H-free subgraphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Alessio Conte , Roberto Grossi , Mamadou Moustapha Kanté , Andrea Marino , Takeaki Uno
{"title":"Listing maximal H-free subgraphs","authors":"Alessio Conte ,&nbsp;Roberto Grossi ,&nbsp;Mamadou Moustapha Kanté ,&nbsp;Andrea Marino ,&nbsp;Takeaki Uno","doi":"10.1016/j.dam.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Given two graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, where <span><math><mi>H</mi></math></span> is the forbidden subgraph or pattern, <span><math><mi>G</mi></math></span> is called <span><math><mi>H</mi></math></span>-free if no vertex subset <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> induces a subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>]</mo></mrow></mrow></math></span> isomorphic to <span><math><mi>H</mi></math></span>. In the edge-induced version of the notion, <span><math><mi>G</mi></math></span> is called <span><math><mi>H</mi></math></span>-free if no edge subset <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊆</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> induces a subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>]</mo></mrow></mrow></math></span> isomorphic to <span><math><mi>H</mi></math></span>. The goal is to list all the inclusion-maximal subgraphs of <span><math><mi>G</mi></math></span> that are <span><math><mi>H</mi></math></span>-free, according to both the edge-induced and vertex-induced versions. Apart from its theoretical interest, the problem has application in data modeling, as it corresponds to data cleaning/repairing tasks, where the entire dataset is inconsistent with respect to the constraints given in <span><math><mi>H</mi></math></span>, and maximal consistent portions are sought. Several output-sensitive algorithms for the vertex-induced version are presented, which depend on the constraints on <span><math><mi>H</mi></math></span> and on <span><math><mi>G</mi></math></span>. As for the edge-induced version, we show how output-sensitive algorithms are possible for specific cases, but an efficient general technique is unlikely to exist as simply certifying a solution can be co-NP-complete.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 18-31"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given two graphs G and H, where H is the forbidden subgraph or pattern, G is called H-free if no vertex subset VV(G) induces a subgraph G[V] isomorphic to H. In the edge-induced version of the notion, G is called H-free if no edge subset EE(G) induces a subgraph G[E] isomorphic to H. The goal is to list all the inclusion-maximal subgraphs of G that are H-free, according to both the edge-induced and vertex-induced versions. Apart from its theoretical interest, the problem has application in data modeling, as it corresponds to data cleaning/repairing tasks, where the entire dataset is inconsistent with respect to the constraints given in H, and maximal consistent portions are sought. Several output-sensitive algorithms for the vertex-induced version are presented, which depend on the constraints on H and on G. As for the edge-induced version, we show how output-sensitive algorithms are possible for specific cases, but an efficient general technique is unlikely to exist as simply certifying a solution can be co-NP-complete.
列出最大的无h子图
给定两个图G和H,其中H为禁止子图或模式,如果没有顶点子集V′≥≥H的子图G[V′],则称G为H-free。在该概念的边诱导版本中,如果没有边子集E′≥E(G)≥H的子图G[E′],则称G为H-free。目标是根据边诱导版本和顶点诱导版本列出G的所有H-free的包含极大子图。除了它的理论兴趣之外,这个问题在数据建模中也有应用,因为它对应于数据清理/修复任务,其中整个数据集与H中给出的约束不一致,并且寻求最大的一致部分。对于边缘诱导的版本,我们展示了输出敏感算法如何在特定情况下是可能的,但一种有效的通用技术不太可能存在,因为简单地证明一个解可以是共np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信