{"title":"Impact of resveratrol on neutrophil extracellular traps","authors":"Mahboobeh Ghasemzadeh Rahbardar , Prashant Kesharwani , Amirhossein Sahebkar","doi":"10.1016/j.mrrev.2025.108550","DOIUrl":null,"url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs) and the process of NETosis have emerged as critical participants in various pathological conditions. Resveratrol, a natural polyphenol found in several plants, has received significant attention due to its potential therapeutic properties. The purpose of this review is to investigate how resveratrol affects NETs and NETosis. The molecular mechanisms underlying NET formation and its role in disease pathogenesis are discussed, highlighting the involvement of various cellular and molecular factors. Moreover, the effects of resveratrol on NET formation, release, and stability are reported, focusing on its potential as a modulator of NET-associated diseases. Studies investigating the effect of resveratrol on NETosis in different disease models, including lung injury, COVID-19, cancer, and hepatic ischemia-reperfusion injury, are also summarized. Furthermore, the potential mechanisms through which resveratrol exerts its effects on NETosis, including anti-inflammatory, antioxidant, and immunomodulatory properties, are elucidated. The review also addresses the challenges and future perspectives in the field, emphasizing the need for further research to fully understand the therapeutic potential of resveratrol in targeting NET-associated disorders. Generally, this review provides a comprehensive analysis of the impact of resveratrol on NETs and NETosis, shedding light on its potential as a therapeutic intervention in various pathological conditions characterized by excessive NET formation. However, further research is essential to clarify the detailed mechanisms through which resveratrol exerts its effects on NETosis and to determine optimal dosages and treatment procedures.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"796 ","pages":"Article 108550"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574225000213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophil extracellular traps (NETs) and the process of NETosis have emerged as critical participants in various pathological conditions. Resveratrol, a natural polyphenol found in several plants, has received significant attention due to its potential therapeutic properties. The purpose of this review is to investigate how resveratrol affects NETs and NETosis. The molecular mechanisms underlying NET formation and its role in disease pathogenesis are discussed, highlighting the involvement of various cellular and molecular factors. Moreover, the effects of resveratrol on NET formation, release, and stability are reported, focusing on its potential as a modulator of NET-associated diseases. Studies investigating the effect of resveratrol on NETosis in different disease models, including lung injury, COVID-19, cancer, and hepatic ischemia-reperfusion injury, are also summarized. Furthermore, the potential mechanisms through which resveratrol exerts its effects on NETosis, including anti-inflammatory, antioxidant, and immunomodulatory properties, are elucidated. The review also addresses the challenges and future perspectives in the field, emphasizing the need for further research to fully understand the therapeutic potential of resveratrol in targeting NET-associated disorders. Generally, this review provides a comprehensive analysis of the impact of resveratrol on NETs and NETosis, shedding light on its potential as a therapeutic intervention in various pathological conditions characterized by excessive NET formation. However, further research is essential to clarify the detailed mechanisms through which resveratrol exerts its effects on NETosis and to determine optimal dosages and treatment procedures.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.