Yuanyuan Chen , Lianggang Huang , Tao Yu , Mingming Zhao , Junping Zhou , Lijuan Wang , Zhiqiang Liu , Yuguo Zheng
{"title":"Tailoring Escherichia coli for high-yield production of O-acetyl-L-homoserine through multi-node metabolic regulation","authors":"Yuanyuan Chen , Lianggang Huang , Tao Yu , Mingming Zhao , Junping Zhou , Lijuan Wang , Zhiqiang Liu , Yuguo Zheng","doi":"10.1016/j.ymben.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>O-acetyl-L-homoserine (OAH) is a key precursor for the biosynthesis of L-methionine and various C4 compounds, with significant industrial potential. However, efficient microbial production of OAH remains challenging due to complex metabolic regulation and precursor limitations. In this study, we rationally developed a plasmid-free, non-auxotrophic <em>Escherichia coli</em> strain to produce OAH. We modularized the OAH synthetic pathway into L-homoserine and acetyl-CoA modules, enhanced each module individually, and identified a highly efficient L-homoserine O-acetyltransferase (MetX) from <em>Cyclobacterium marinum</em>. Using small RNA screening, we pinpointed critical metabolic nodes and fine-tuned the pathway flux through promoter engineering and regulatory elements. Notably, we balanced the acetyl-CoA and L-homoserine synthesis with moderate expression of pyruvate carboxylase, weakened the TCA cycle by modulating citrate synthase and the branched-chain amino acid pathway by attenuating BCAA aminotransferase, thereby redirecting carbon flux towards OAH production. Additionally, we optimized the threonine attenuator for dynamic regulation of the threonine pathway and enhanced intracellular ATP turnover. Under a two-stage pH control fermentation strategy, the final plasmid-free and non-auxotrophic strain OAH37 achieved a titer of 94.1 g/L OAH, with a yield of 0.42 g/g glucose and a productivity of 1.37 g/L/h. Our work demonstrates the potential of metabolic engineering strategies for efficient microbial synthesis of OAH, providing a foundation for industrial-scale production of this important precursor.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 455-465"},"PeriodicalIF":6.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000965","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
O-acetyl-L-homoserine (OAH) is a key precursor for the biosynthesis of L-methionine and various C4 compounds, with significant industrial potential. However, efficient microbial production of OAH remains challenging due to complex metabolic regulation and precursor limitations. In this study, we rationally developed a plasmid-free, non-auxotrophic Escherichia coli strain to produce OAH. We modularized the OAH synthetic pathway into L-homoserine and acetyl-CoA modules, enhanced each module individually, and identified a highly efficient L-homoserine O-acetyltransferase (MetX) from Cyclobacterium marinum. Using small RNA screening, we pinpointed critical metabolic nodes and fine-tuned the pathway flux through promoter engineering and regulatory elements. Notably, we balanced the acetyl-CoA and L-homoserine synthesis with moderate expression of pyruvate carboxylase, weakened the TCA cycle by modulating citrate synthase and the branched-chain amino acid pathway by attenuating BCAA aminotransferase, thereby redirecting carbon flux towards OAH production. Additionally, we optimized the threonine attenuator for dynamic regulation of the threonine pathway and enhanced intracellular ATP turnover. Under a two-stage pH control fermentation strategy, the final plasmid-free and non-auxotrophic strain OAH37 achieved a titer of 94.1 g/L OAH, with a yield of 0.42 g/g glucose and a productivity of 1.37 g/L/h. Our work demonstrates the potential of metabolic engineering strategies for efficient microbial synthesis of OAH, providing a foundation for industrial-scale production of this important precursor.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.