Euclidean sets with only one distance modulo a prime ideal

IF 1.2 3区 数学 Q1 MATHEMATICS
Hiroshi Nozaki
{"title":"Euclidean sets with only one distance modulo a prime ideal","authors":"Hiroshi Nozaki","doi":"10.1016/j.ffa.2025.102690","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a finite set in the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. If the squared distance between any two distinct points in <em>X</em> is an odd integer, then the cardinality of <em>X</em> is bounded above by <span><math><mi>d</mi><mo>+</mo><mn>2</mn></math></span>, as shown by Rosenfeld (1997) or Smith (1995). They proved that there exists a <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-point set <em>X</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> having only odd integral squared distances if and only if <span><math><mi>d</mi><mo>+</mo><mn>2</mn></math></span> is congruent to 0 modulo 4. The distances can be interpreted as an element of the finite field <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>. We generalize this result for a local ring <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>p</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> as follows. Let <em>K</em> be an algebraic number field that can be embedded into <span><math><mi>R</mi></math></span>. Fix an embedding of <em>K</em> into <span><math><mi>R</mi></math></span>, and <em>K</em> is interpreted as a subfield of <span><math><mi>R</mi></math></span>. Let <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> be the ring of integers of <em>K</em>, and <span><math><mi>p</mi></math></span> a prime ideal of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span>. Let <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>p</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> be the local ring obtained from the localization <span><math><msup><mrow><mo>(</mo><mi>A</mi><mo>∖</mo><mi>p</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>A</mi></math></span>, which is interpreted as a subring of <span><math><mi>R</mi></math></span>. If the squared distances of <span><math><mi>X</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and each squared distance is congruent to some constant <span><math><mi>k</mi><mo>≢</mo><mn>0</mn></math></span> modulo <span><math><mi>p</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, then <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>2</mn></math></span>, as shown by Nozaki (2023). In this paper, we prove that there exists a set <span><math><mi>X</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> attaining the upper bound <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>2</mn></math></span> if and only if <span><math><mi>d</mi><mo>+</mo><mn>2</mn></math></span> is congruent to 0 modulo 4 when the finite field <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><mi>p</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is of characteristic 2, and <span><math><mi>d</mi><mo>+</mo><mn>2</mn></math></span> is congruent to 0 modulo <em>p</em> when <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><mi>p</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is of characteristic <em>p</em> odd. We also provide examples attaining this upper bound.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102690"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a finite set in the Euclidean space Rd. If the squared distance between any two distinct points in X is an odd integer, then the cardinality of X is bounded above by d+2, as shown by Rosenfeld (1997) or Smith (1995). They proved that there exists a (d+2)-point set X in Rd having only odd integral squared distances if and only if d+2 is congruent to 0 modulo 4. The distances can be interpreted as an element of the finite field Z/2Z. We generalize this result for a local ring (Ap,pAp) as follows. Let K be an algebraic number field that can be embedded into R. Fix an embedding of K into R, and K is interpreted as a subfield of R. Let A=OK be the ring of integers of K, and p a prime ideal of OK. Let (Ap,pAp) be the local ring obtained from the localization (Ap)1A, which is interpreted as a subring of R. If the squared distances of XRd are in Ap and each squared distance is congruent to some constant k0 modulo pAp, then |X|d+2, as shown by Nozaki (2023). In this paper, we prove that there exists a set XRd attaining the upper bound |X|d+2 if and only if d+2 is congruent to 0 modulo 4 when the finite field Ap/pAp is of characteristic 2, and d+2 is congruent to 0 modulo p when Ap/pAp is of characteristic p odd. We also provide examples attaining this upper bound.
只有一个距离模素理想的欧几里得集合
设X是欧几里德空间Rd中的一个有限集合。如果X中任意两个不同点之间的距离的平方是奇数,则X的基数以d+2为界,如Rosenfeld(1997)或Smith(1995)所示。他们证明了在Rd中存在一个(d+2)点集X只有奇数的平方积分距离当且仅当d+2等于0取4模。距离可以解释为有限场Z/2Z的一个元素。我们将这个结果推广到局部环(Ap,pAp)如下:设K是一个可嵌入R中的代数数域,将K嵌入R,则K被解释为R的一个子域。设a =OK是K的整数环,p是OK的素理想。设(Ap,pAp)是由定位(A∈p)−1A得到的局部环,它被解释为r的子环。如果X∧Rd的平方距离在Ap中,并且每个平方距离都等于某个常数k 0模pAp,则|X|≤d+2,如Nozaki(2023)所示。本文证明了存在一个集合X∧Rd,当且仅当当有限域Ap/pAp为特征2时,d+2与0模4全等,且当Ap/pAp为特征p奇时,d+2与0模p全等,达到上界|X|≤d+2。我们也提供了得到这个上界的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信